GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN

(AUTONOMOUS)

(Affiliated to Andhra University, Visakhapatnam)

B.Tech. - I Semester Regular Examinations, December / January – 2025

CALCULUS AND DIFFERENTIAL EQUATIONS

(Common to <<CSE,CSE-AIML,IT,ECE and EEE>>)

- 1. All questions carry equal marks
- 2. Must answer all parts of the question at one place

Time: 3Hrs. Max Marks: 70

UNIT-I

1. a. If
$$u = (x^2 + y^2 + z^2)^{-1/2}$$
, Then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$ [7]

b. Calculate
$$\frac{\partial(u,v,w)}{\partial(x,y,z)}$$
 if $u = x^2 - 2y$, $v = x + y + z$, $w = x - 2y + 3z$. [7]

OR

2. a. If
$$u = \sin^{-1}(x - y)$$
, $x = 3t$ and $y = 4t^3$, Show that $\frac{du}{dt} = 3(1 - t^2)^{\frac{-1}{2}}$. [7]

b. Determine the Taylor's series expansion of

$$f(x,y) = x^2 + 3y^2 - 9x - 9y + 26$$
 about the point $(2,2)$. [7]

UNIT-II

- 3. a. Discuss the Maxima and Minima of $f(x, y) = x^4 + y^4 2x^2 + 4xy 2y^2$ [7]
 - b. Discuss the maxima, minima of the function $f = x^2 + y^2 + z^2$ where x, y, z are connected by the relation xyz = 216. [7]

OR

- 4. a. Examine the function $x^3 + y^3 3axy$ for the maxima and minima. [7]
 - b. Find the minimum value of $x^2 + y^2 + z^2$ having given ax + by + cz = p. [7]

<u>UNIT-III</u>

- 5. a. Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xyz \, dx \, dy \, dz$. [7]
 - b. By applying the Change of order of integration evaluate $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$ [7]

OR

- 6. a. Evaluate $\int_0^5 \int_0^{x^2} x(x^2 + y^2) dx dy$. [7]
 - b. Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and planes y + z = 4 and z = 0. [7]

UNIT-IV

- 7. a. Solve $(x^2y 2xy^2)dx (x^3 3x^2y)dy = 0$ [7]
 - b. Apply the method of variation of parameters to solve $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = \frac{e^x}{x}$ [7]

OR

- 8. a. Solve $(D^2 1)y = e^x + x^2 e^x$. [7]
 - b. A body originally at $80^{\circ}c$ cools down to $60^{\circ}c$ in 20 minutes, the temperature of the air being $40^{\circ}c$. What will be the temperature of the body after 40 minutes from the original?

UNIT-V

[7]

- 9. a. Find the Laplace transform of $\frac{cosat-cosbt}{t}$. [7]
 - b. Solve $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = e^{-t}$; y(0) = 1, y'(0) = 1, at t = 0 by using Laplace transform method. [7]

OR

- 10. a. Evaluate $\int_0^\infty t e^{-2t} \sin 3t \ dt$ using Laplace transform. [7]
 - b. Find $L^{-1}\left[\frac{1}{(s^2+1)(s^2+9)}\right]$ using convolution theorem. [7]