

Gayatri Vidya Parishad College of Engineering for Women (Autonomous) Madhurawada, Visakhapatnam

(Affiliated to Andhra University, Visakhapatnam)

II B.Tech. I Semester – Regular Examinations, Nov – 2025

Subject Name:

Linear ICs & Applications [24EC11RC09]

Max. Marks: 70 M

Faculty Name:

P V K Chaitanya

Branches: ECE

SCHEME OF VALUATION

Q No	weightage	Total Marks
1 (a)	Derive the frequency response of an op-amp and explain the concept of slew rate	7
	Frequency response of op-amp 4M Slew Rate 3M	
1 (b)	Discuss various compensation techniques used to improve stability.	7
	Dominant Pole Compensation 4M Pole-Zero Compensation 3M	
2 (a)	Explain the internal block diagram of 741 op-amp with neat sketch.	7
0 (1)	Internal block diagram and pin diagram 4M Explanation 3M	
2 (b)	Analyze the parameters affecting op-amp performance in linear region.	7
	Any 4 L DC Parameters 4M AC Parameters 3M	
3 (a)	Design and analyze an op-amp based inverting and non-inverting amplifier.	7
	Inverting amplifier design and analysis 3.5M Non-Inverting amplifier design and analysis 3.5M	
3 (b)	Explain the operation of integrator and differentiator circuits.	7
	Integrator circuit and operation 3.5M Differentiator circuit and operation 3.5M	
4 (a)	Explain the operation of Adder and Subtractor circuits using OP-AMP.	7
	Adder circuit and operation 3.5M Subtractor circuit and operation 3.5M	
l (b)	Derive the expression for frequency of oscillations of an RC phase shift oscillator.	7
	Circuit Diagram 2M Derivation for fo 5M	
(a)	Explain the design of a Schmitt Trigger Circuit using OP-AMP.	7
	Circuit Diagram 2M Design explanation 5M	-

Gayatri Vidya Parishad College of Engineering for Women (Autonomous) Madhurawada, Visakhapatnam

(Affiliated to Andhra Jniversity, Visakhapatnam)

II B.Tech. I Semester - Regular Examinations, Nov - 2025

5 (b)	Explain the operation of a monostable multivibrator circuit. Circuit Diagram 2M	7
6 (a)	Describe the working of active filters and derive transfer functions for LPF and	7
	HPF.	·
	LPF Circuit and Transfer fn. derivation 3.5M	
	HPF.Circuit and Transfer fn. derivation 3.5M	
6 (b)	Discuss the effect of finite open loop gain on filter response.	7
	Effect of finite open loop gain on filter response 7M	
7 (a)	Explain the working of ADC using successive approximation method.	7
	Circuit Diagram 2M	
	Explanation 5M	
7 (b)	Derive the relation between resolution and quantization error in DAC.	7
	Resolution 2M	
	Quantization error 2M	
	Relation 3M	
8 (a)	Design a 4-bit binary-weighted DAC using op-amps and resistors.	7
	Circuit Diagram 2M	
	Explanation 5M	
8 (b)	Compare R–2R ladder and binary-weighted DACs in terms of accuracy and linearity.	7
	R–2R ladder DAC 2M	
	binary-weighted DAC 2M	
	Comparison of accuracy and linearity 3M	
9 (a)	Describe the functional block diagram and working of 555 timer in astable mode.	7
	Circuit Diagram 2M	
	Explanation 5M	
9 (b)	Discuss applications of 555 timer as monostable multivibrator.	7
	Any 2 applications 7M	
10 (a)	Explain the functional diagram of PLL and its applications in frequency synthesis.	7
	Diagram of PLL 4M	
	Application in Frequency Synthesis 3M	
10 (b)	Analyze VCO characteristics and lock range of PLL circuits.	7
	VCO Characteristics 4M	
	Lock range of PLL circuits 3M	

Vouibred

(Dr. M. Mani Keemari)

PV K Chaitanya Assistant Professor Department of ECE