
 
 

 
 

 
 

 

 
 

 
 

STATISTICS WITH R PROGRAMMING 

Lecture Notes 

 

 

 
Prepared by 

K.Rohini, 

Assistant Professor, 

CSE Department, 

GVPCEW. 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT- I 

Introduction, How to run R, R Sessions and Functions, Basic Math, 

Variables, Data Types, Vectors, Conclusion, Advanced Data 

Structures, Data Frames, Lists, Matrices, Arrays, Classes 

Introduction: 

R is a programming language and environment commonly used in statistical 
computing, data analytics and scientific research. 

It is one of the most popular languages used by statisticians, data analysts, 
researchers and marketers to retrieve, clean, analyze, visualize and present data. 
  

Due to its expressive syntax and easy-to-use interface, it has grown in popularity 
in recent years. 

 R is a programming language and software environment for statistical 
analysis, graphics representation and reporting. R was created by Ross 
Ihaka and Robert Gentleman at the University of Auckland, New Zealand, 
and is currently developed by the R DevelopmentCore Team. 

 The core of R is an interpreted computer language which allows branching 
and looping as well as modular programming using functions.  

 R allows integration with the procedures written in the C, C++, .Net, Python 
or FORTRAN languages for efficiency.  

 R is freely available under the GNU General Public License, and pre-
compiled binary versions are provided for various operating systems like 
Linux, Windows and Mac. 

 R is free software distributed under a GNU-style copy left, and an official 
part of the GNU project called GNU S 
 

Features of R 
As stated earlier, R is a programming language and software environment 

for statistical analysis, graphics representation and reporting. The 
following are the important features of R: 

R is a well-developed, simple and effective programming language which 

includes conditionals, loops, user defined recursive functions and input 

and output facilities. 
R has an effective data handling and storage facility, 

R provides a suite of operators for calculations on arrays, lists, vectors 

and matrices. 

R provides a large, coherent and integrated collection of tools for data 

analysis. 

R provides graphical facilities for data analysis and display either directly 

at the computer or printing at the papers. 

As a conclusion, R is world’s most widely used statistics programming 

language. It's the#1 choice of data scientists and supported by a vibrant 
and talented community of contributors. R is taught in universities and 

deployed in mission critical business applications.  



 

Things to Know Before Start Learning R 
 
Why use R 

• R is an open source programming language and software environment for 
statistical computing and graphics. 

• R is an object oriented programming environment, much more than most 
other statistical software packages. 

• R is a comprehensive statistical platform, offering all manner of data-analytic 
techniques – any type of data analysis can done in R. 

• R has state-of-the-art graphics capabilities- visualize complex data. 
• R is a powerful platform for interactive data analysis and exploration. 
• Getting data into a usable form from multiple sources . 
• R functionality can be integrated into applications written in other languages, 

including C++, Java, Python , PHP, SAS and SPSS. 
• R runs on a wide array of platforms, including Windows, Unix and Mac OS X. 
• R is extensible; can be expanded by installing “packages”  

Why use R for statistical computing and graphics? 

1. R is open source and free! 
R is free to download as it is licensed under the terms of GNU General 
Public license.  
 
You can look at the source to see what’s happening under the hood. 
There’s more, most R packages are available under the same license 
so you can use them, even in commercial applications without having to 
call your lawyer. 

2. R is popular - and increasing in popularity 
IEEE publishes a list of the most popular programming languages each 
year. R was ranked 5th in 2016, up from 6th in 2015. It is a big deal for a 
domain-specific language like R to be more popular than a general 
purpose language like C#. 
 
This not only shows the increasing interest in R as a programming 
language, but also of the fields like Data Science and Machine Learning 
where R is commonly used. 

3. R runs on all platforms 
You can find distributions of R for all popular platforms - Windows, Linux 
and Mac. 
  
R code that you write on one platform can easily be ported to another 
without any issues. Cross-platform interoperability is an important 
feature to have in today’s computing world - even Microsoft is making its 
coveted .NET platform available on all platforms after realizing the 
benefits of technology that runs on all systems. 

4. Learning R will increase your chances of getting a job 
According to the Data Science Salary Survey conducted by O’Reilly 
Media in 2014, data scientists are paid a median of $98,000 worldwide. 

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages


The figure is higher in the US - around $144,000. 
 
Of course, knowing how to write R programs won’t get you a job straight 
away, a data scientist has to juggle a lot of tools to do their work. Even if 
you are applying for a software developer position, R programming 
experience can make you stand out from the crowd. 

5. R is being used by the biggest tech giants 
Adoption by tech giants is always a sign of a programming language’s 
potential. Today’s companies don’t make their decisions on a whim. 
Every major decision has to be backed by concrete analysis of data. 
Companies Using R 
R is the right mix of simplicity and power, and companies all over the 
world use it to make calculated decisions. Here are a few ways industry 
stalwarts are using R and contributing to the R ecosystem. 
  

Company Application/Contribution 

Twitter Monitor user experience 

Ford 
Analyse social media to support design decisions for their 

cars 

New York Times Infographics, data journalism 

Microsoft 

Released Microsoft R Open, an enhanced R distribution 

and Microsoft R server after acquiring Revolution Analytics 

in 2015 

Human Rights 

Data Analysis 

Group 

Measure the impact of war 

Google 
Created the R style guide for the R user community inside 

Google 

While using R, you can rest assured that you are standing on the shoulders of 
giants. 

Is R programming an easy language to learn? 

This is a difficult question to answer. Many researchers are learning R as their 
first language to solve their data analysis needs. 



That’s the power of the R programming, it is simple enough to learn as you go. All 
you need is data and a clear intent to draw a conclusion based on analysis on 
that data. 

In fact, R is built on top of the language S programming that was originally 
intended as a programming language that would help the student learn 
programming while playing around with data. 

However, programmers that come from a Python, PHP or Java background might 
find R quirky and confusing at first. The syntax that R uses is a bit different from 
other common programming languages. 

While R does have all the capabilities of a programming language, you will not 
find yourself writing a lot of if conditions or loops while writing code in the R 
language. There are other programming constructs like vectors, lists, frames, 
data tables, matrices etc. that allow you to perform transformations on data in 
bulk. 

Applications of R Programming in Real World 

1. Data Science 
Harvard Business Review named data scientist the "sexiest job of 
the 21st century". Glassdoor named it the "best job of the year" for 
2016. With the advent of IoT devices creating terabytes and terabytes of 
data that can be used to make better decisions, data science is a field 
that has no other way to go but up. 
 
Simply explained, a data scientist is a statistician with an extra asset: 
computer programming skills. Programming languages like R give a 
data scientist superpowers that allow them to collect data in realtime, 
perform statistical and predictive analysis, create visualizations and 
communicate actionable results to stakeholders. 
 
Most courses on data science include R in their curriculum because it is 
the data scientist’s favourite tool. 

2. Statistical computing 
R is the most popular programming language among statisticians. In 
fact, it was initially built by statisticians for statisticians. It has a rich 
package repository with more than 9100 packages with every statistical 
function you can imagine. 
 
R’s expressive syntax allows researchers - even those from non 
computer science backgrounds to quickly import, clean and analyze 
data from various data sources. 
R also has charting capabilities, which means you can plot your data 
and create interesting visualizations from any dataset. 

3. Machine Learning 
R has found a lot of use in predictive analytics and machine learning. It 
has various package for common ML tasks like linear and non-linear 
regression, decision trees, linear and non-linear classification and many 
more. 

http://ect.bell-labs.com/sl/S/
https://cran.r-project.org/web/packages/available_packages_by_date.html


 
Everyone from machine learning enthusiasts to researchers use R to 
implement machine learning algorithms in fields like finance, genetics 
research, retail, marketing and health care. 

Alternatives to R programming 

R is not the only language that you can use for statistical computing and graphics. 
Some of the popular alternatives of R programming are: 

Python - Popular general purpose language 

Python is a very powerful high-level, object-oriented programming language with an 
easy-to-use and simple syntax. 

Python is extremely popular among data scientists and researchers. Most of the 
packages in R have equivalent libraries in Python as well. 

While R is the first choice of statisticians and mathematicians, professional 
programmers prefer implementing new algorithms in a programming language they 
already know. 

The choice between R vs Python also depends on what you are trying to accomplish 
with your code. If you are trying to analyze a dataset and present the findings in a 
research paper, then R is probably a better choice. But if you are writing a data 
analysis program that runs in a distributed system and interacts with lots of other 
components, it would be preferable to work with Python. 

SAS (Statistical Analysis System) 

SAS is a powerful software that has been the first choice of private enterprise for 
their analytics needs for a long time. Its GUI and comprehensive documentation, 
coupled with reliable technical support make it a very good tool for companies. 

While R is the undisputed champion in academics and research, SAS is extremely 
popular in commercial analytics. But R and Python are gaining momentum in the 
enterprise space and companies are also trying to move towards open-source 
technologies. Time will tell if SAS will continue its dominance or R/Python will take 
over. 

SPSS - Software package for statistical analysis 

SPSS is another popular statistical tool. It is used most commonly in the social 
sciences and is considered the easiest to learn among enterprise statistical tools. 

SPSS is loved by non-statisticians because it is similar to excel so those who are 
already familiar with it will find SPSS very easy to use. 

SPSS has the same downside as SAS - it is expensive. SPSS was acquired by IBM 
in 2009 for a reported $1.2 billion. 

http://www.programiz.com/python-programming
http://www.sas.com/en_us/home.html
http://www.ibm.com/analytics/us/en/technology/spss/


Downloading and Installing R 

•  R is free available from the comprehensive R Archive Network (CRAN) at 
http://cran.r-project.org  

• Precompiled binaries are available for Linux, Mac OS X and windows. 
•  R latest release  R-3.4.0 
• Installing R on windows and Mac is just like installing any other program. 
• Install R Studio: a free IDE for R at http://www.rstudio.com/  
• If we install R and R Studio, then we need to run R Studio only. 
• R is case-sensitive. 
• R scripts are simply text files with a .R extension. 

 

•  

http://cran.r-project.org/
http://www.rstudio.com/


•  

•  
 

Run R Programming on Your Computer 
You will find the easiest way to run R programming on your system (Windows) in 
this section. 

Run R Programming in Windows 

1. Go to official site of R programming(https://www.r-project.org/) 

2. Click on the CRAN link on the left sidebar 

3. Select a mirror 

https://www.r-project.org/


4. Click "Download R for Windows” 

5. Click on the link that downloads the base distribution 

6. Run the file and follow the steps in the instructions to install R. 

Should I install the 32-bit version or the 64-bit 

version? 

Most people don’t need to worry about this. Obviously the 64-bit version of R 
won’t work on a 32-bit machine but both the 32-bit and 64-bit versions of R runs 
seamlessly on 64-bit Windows. 

You might want to consider installing 32-bit version of R if your production 
environment is 32-bit because some packages might have compatibility issues 
and might cause the “But it works on my machine” fiasco. 

 

Getting help in R 

To get help on specific topics, we can use the help() function along with the topic 
we want to search. We can also use the ? operator for this. 

> help(Syntax) 

> ?Syntax 

We also have the help.search() function to do a search engine type of search. We 
could use the ?? operator for this. 



> help.search("histograms") 

> ??"histograms" 

You must be itching to start learning R by now. Our collection of R tutorials will 
help you learn R. Whether you are a beginner or an expert, each tutorial explains 
the relevant concepts and syntax with easy-to-understand examples. 

R sessions 

1. Starting an R session 

The R programming can be done in two ways. We can either type the command 

lines on the screen inside an "R-session", or we can save the commands as a 

"script" file and execute the whole file inside R. First we will learn the R-

session. 

To start an R session, type 'R' from the command line in windows or linux OS. 

For example, from shell prompt '$' in linux, type 

$ R 

This generates the following output before entering the '>>' prompt of R: 

 

R version 3.1.1 (2014-07-10) -- "Sock it to Me" 

Copyright (C) 2014 The R Foundation for Statistical Computing 

Platform: x86_64-unknown-linux-gnu (64-bit) 

 

R is free software and comes with ABSOLUTELY NO WARRANTY. 

You are welcome to redistribute it under certain conditions. 

Type 'license()' or 'licence()' for distribution details. 

 

  Natural language support but running in an English locale 

 

R is a collaborative project with many contributors. 

Type 'contributors()' for more information and 

'citation()' on how to cite R or R packages in publications. 

 

Type 'demo()' for some demos, 'help()' for on-line help, or 

'help.start()' for an HTML browser interface to help. 

Type 'q()' to quit R. 

 

[Previously saved workspace restored] 

 

 >  

 
 



Working with R session 

Once we are inside the R session, we can directly execute R language 

commands by typing them line by line. Pressing the enter key terminates typing 

of command and brings the > prompt again. In the example session below, we 

declare 2 variables 'a' and 'b' to have values 5 and 6 respectively, and assign 

their sum to another variable called 'c': 
  

 >  a = 5 

 >  b = 6 

 >  c = a + b 

 >  c 

The value of the variable 'c' is printed as, 

[1] 11 

In R session, typing a variable name prints its value on the screen. 

Get help inside R session 

To get help on any function of R, type help(function-name) in R prompt. For 

example, if we need help on "if" logic, type, 
  

 

 >  help("if") 

then, help lines for the "if" statement are printed. 

Exit the R session 

To exit the R session, type quit() in the R prompt, and say 'n' (no) for saving the 

workspace image. This means, we do not want to save the memory of all the 

commands we typed in the current session: 
  

 

 >  quit() 

Save workspace image? [y/n/c]: n  

> 

Saving the R session 

Note that by not saving the current session, we loose all the memory of current 

session commands and the variables and objects created when we exit R 

prompt.  

 

When we work in R, the R objects we created and loaded are stored in a 

memory portion called workspace. When we say 'no' to saving the workspace, 

we all these objects are wiped out from the workspace memory. If we say 'yes', 

they are saved into a file called ".RData" is written to the present working 

directory.  

 

In Linux, this "working directory" is generally the directory from where R was 



started through the command 'R'. In windows, it can be either "My Documents" 

or user's home directory.  

 

When we start R in the same currnt directory next time, the work space and all 

the created objects are restored automatically from this ".RData" directory. 

Listing the objects in the current R session 

We can list the names of the objects in the current R session by ls() command. 

For example, start R session fresh and proceed as follows: 

  

 

 >  

 >  a = 5 

 >  b = 6 

 >  c = 8 

 >  sum = a+b+c 

 

 >  sum 

[1] 19 

> ls() 

[1] "a" "b" "c" "sum" 

Here, the objects we created have been listed. 

Removing objects from the current R session 

Specific objects created in the current session can be removed 

using rm() command. If we specify the name of an object, it will be removed. If 

we just say rm(list = las()) , all objects created so far will be removed. See 

below: 
  

 

 >  a = 5 

 >  b = 6 

 >  c = 8 

 >  sum = a+b+c 

 >  sum 

[1] 19 

> ls() 

[1] "a" "b" "c" "sum" 

> 

  

 >  rm(list=c("sum")) 



 >  ls() 

[1] "a" "b" "c" 

> 

 

 >  rm(list = ls()) 

 >  ls() 

character(0) 

Getting and setting the current working directories 

From R prompt, we can get information about the current working directory 

using getwd() command:  

 

> getwd() 

[1] "/home/user" 

Similarly, we can set the current wor directory by calling setwd() function:  

 

> setwd("/home/user/prog") 

 

After this, "/home/user/prog" will be the working directory.  

 

 

In Windows version of R, the working directory can be set from menu in R 

window. 

Getting file information from R session 

When we are inside R prompt, the operation system commands will not be 

recognised by R. If we want to list the names of files in the current directory in 

which R has been started, we should use list.files() commnd to list the files. 

This lists all the files in the current directory.  

 

In case we need information on a specific file, 

use file.info("filename") command. This prints all the information about this file 

on the screen. 

 

Comments 
Comments are like helping text in your R program and they are ignored by the interpreter 

while executing your actual program. Single comment is written using # in the beginning of 

the statement as follows: 

# My first program in R Programming 

R does not support multi-line comments but you can perform a trick which is something 

as follows: 



if(FALSE){ 

"This is a demo for multi-line comments and it should be put 

inside either a single of double quote" 

} 

myString <- "Hello, World!" 

print ( myString) 

Though above comments will be executed by R interpreter, they will not interfere with 

your actual program. You should put such comments inside, either single or double 

quote. 

R Reserved Words 

Reserved words in R programming are a set of words that have special meaning and 
cannot be used as an identifier (variable name, function name etc.). 

Here is a list of reserved words in the R's parser. 

Reserved words in R 

if else repeat while function 

for in next break TRUE 

FALSE NULL Inf NaN NA 

NA_integer_ NA_real_ NA_complex_ NA_character_ ... 

This list can be viewed by typing help(reserved) or ?reserved at the R command 
prompt as follows. 

 

> ?reserved 

Among these words, if, else, repeat, while, function, for, in, next and break are 
used for conditions, loops and user defined functions. 

They form the basic building blocks of programming in R. 

TRUE and FALSE are the logical constants in R. 

NULL represents the absence of a value or an undefined value. 

Inf is for "Infinity", for example when 1 is divided by 0 whereas NaN is for "Not a 
Number", for example when 0 is divided by 0. 

NA stands for "Not Available" and is used to represent missing values. 

R is a case sensitive language. Which mean that TRUE and True are not the same. 



While the first one is a reserved word denoting a logical constant in R, the latter can 
be used a variable name. 

> TRUE <- 1 

Error in TRUE <- 1 : invalid (do_set) left-hand side to assignment 

 

> True <- 1 

 

> TRUE 

[1] TRUE 

 

> True 

[1] 1 

R Variables and Constants 

 

Variables in R 

Variables are used to store data, whose value can be changed according to our 
need. Unique name given to variable (function and objects as well) is identifier. 

 

Rules for writing Identifiers in R 

1. Identifiers can be a combination of letters, digits, period (.) and underscore (_). 
2. It must start with a letter or a period. If it starts with a period, it cannot be followed by 

a digit. 
3. Reserved words in R cannot be used as identifiers. 

 

Valid identifiers in R 

total, Sum, .fine.with.dot, this_is_acceptable, Number5 



 

Invalid identifiers in R 

tot@l, 5um, _fine, TRUE, .0ne 

 

Best Practices 

Earlier versions of R used underscore (_) as an assignment operator. So, the period 
(.) was used extensively in variable names having multiple words. 

Current versions of R support underscore as a valid identifier but it is good practice 
to use period as word separators. 

For example, a.variable.name is preferred over a_variable_name or alternatively we 
could use camel case as aVariableName 

 

Constants in R 

Constants, as the name suggests, are entities whose value cannot be altered. Basic 
types of constant are numeric constants and character constants. 

 

Numeric Constants 

All numbers fall under this category. They can be of type integer, double or complex. 

It can be checked with the typeof() function. 

Numeric constants followed by L are regarded as integer and those followed 
by i are regarded as complex. 

> typeof(5) 

[1] "double" 

   

> typeof(5L) 

[1] "integer" 

 

> typeof(5i) 

[1] "complex" 



Numeric constants preceded by 0x or 0X are interpreted as hexadecimal numbers. 

> 0xff 

[1] 255 

 

> 0XF + 1 

[1] 16 

 

Character Constants 

Character constants can be represented using either single quotes (') or double 
quotes (") as delimiters. 

> 'example' 

[1] "example" 

 

> typeof("5") 

[1] "character" 

 

Built-in Constants 

Some of the built-in constants defined in R along with their values is shown below. 

> LETTERS 

 [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" 
"Q" "R" "S" 

[20] "T" "U" "V" "W" "X" "Y" "Z" 

 

> letters 

 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" 
"q" "r" "s" 

[20] "t" "u" "v" "w" "x" "y" "z" 

 

> pi 

 [1] 3.141593 

 



> month.name 

 [1] "January"   "February"  "March"     "April"     "May"       
"June"      

 [7] "July"      "August"    "September" "October"   "November"  
"December"  

 

> month.abb 

 [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" 
"Nov" "Dec" 

But it is not good to rely on these, as they are implemented as variables whose 
values can be changed. 

> pi 

[1] 3.141593 

 

> pi <- 56 

> pi 

[1] 56 

 

Example: Hello World Program 
> # We can use the print() function 

> print("Hello World!") 

[1] "Hello World!" 

 

> # Quotes can be suppressed in the output 

> print("Hello World!", quote = FALSE) 

[1] Hello World! 

 

> # If there are more than 1 item, we can concatenate using paste() 

> print(paste("How","are","you?")) 

[1] "How are you?" 

R - Data Types 
Generally, while doing programming in any programming language, you 

need to use various variables to store various information. Variables are 



nothing but reserved memory locations to store values. This means 

that, when you create a variable you reserve some space in memory. 

You may like to store information of various data types like character, 

wide character, integer, floating point, double floating point, Boolean etc. 

Based on the data type of a variable, the operating system allocates 

memory and decides what can be stored in the reserved memory. 

In contrast to other programming languages like C and java in R, the 

variables are not declared as some data type. The variables are 

assigned with R-Objects and the data type of the R-object 

becomes the data type of the variable. There are many types of R-

objects. The frequently used ones are − 

 Vectors 

 Lists 

 Matrices 

 Arrays 

 Factors 

 Data Frames 

The simplest of these objects is the vector object and there are six data 

types of these atomic vectors, also termed as six classes of vectors. The 

other R-Objects are built upon the atomic vectors. 

Data Type Example Verify 

Logical TRUE, FALSE 

v <- TRUE  

print(class(v)) 

it produces the following result 

− 

[1] "logical"  

Numeric 12.3, 5, 999 

v <- 23.5 

print(class(v)) 

it produces the following result 

− 

[1] "numeric" 

Integer 2L, 34L, 0L v <- 2L 



print(class(v)) 

it produces the following result 

− 

[1] "integer" 

Complex 3 + 2i 

v <- 2+5i 

print(class(v)) 

it produces the following result 

− 

[1] "complex" 

Character 'a' , '"good", "TRUE", '23.4' 

v <- "TRUE" 

print(class(v)) 

it produces the following result 

− 

[1] "character" 

Raw "Hello" is stored as 48 65 6c 6c 6f 

v <- charToRaw("Hello") 

print(class(v)) 

it produces the following result 

− 

[1] "raw"  

In R programming, the very basic data types are the R-objects 

called vectors which hold elements of different classes as shown above. 

Please note in R the number of classes is not confined to only the above 

six types. For example, we can use many atomic vectors and create an 

array whose class will become array. 

Understanding basic data types in R 

 To make the best of the R language, you'll need a strong understanding of 

the basic data types and data structures and how to operate on those. 

 Very Important to understand because these are the things you will 

manipulate on a day-to-day basis in R. Most common source of frustration 

among beginners. 

 Everything in R is an object. 

R has 5 basic atomic classes 



 logical (e.g., TRUE, FALSE) 

 integer (e.g,, 2L, as.integer(3)) 

 numeric (real or decimal) (e.g, 2, 2.0, pi) 

 complex (e.g, 1 + 0i, 1 + 4i) 

 character (e.g, "a", "swc") 

typeof() # what is it? 

class() # what is it? (sorry) 

storage.mode() # what is it? (very sorry) 

length() # how long is it? What about two dimensional objects? 

attributes() # does it have any metadata? 

R also has many data structures. These include 

 vector 

 list 

 matrix 

 data frame 

 factors (we will avoid these, but they have their uses) 

 tables 

Vectors 

A vector is the most common and basic data structure in R and is pretty much the 

workhorse of R. Vectors can be of two types: 

 atomic vectors 

 lists 

Atomic Vectors A vector can be a vector of characters, logical, integers or numeric. 

Create an empty vector with vector() 

x <- vector() 

# with a pre-defined length 

x <- vector(length = 10) 

# with a length and type 

vector("character", length = 10) 

vector("numeric", length = 10) 

vector("integer", length = 10) 

vector("logical", length = 10) 

The general pattern is vector(class of object, length). You can also create 

vectors by concatenating them using the c() function. 

Various examples: 

x <- c(1, 2, 3) 

x is a numeric vector. These are the most common kind. They are numeric objects 

and are treated as double precision real numbers. To explicitly create integers, add 

a L at the end. 

x1 <- c(1L, 2L, 3L) 



You can also have logical vectors. 

y <- c(TRUE, TRUE, FALSE, FALSE) 

(Don't use T and F!) 

Finally you can have character vectors: 

z <- c("Alec", "Dan", "Rob", "Rich") 

Examine your vector 

typeof(z) 

length(z) 

class(z) 

str(z) 

Question: Do you see property that's common to all these vectors above? 

Add elements 

z <- c(z, "Annette") 

z 

More examples of vectors 

x <- c(0.5, 0.7) 

x <- c(TRUE, FALSE) 

x <- c("a", "b", "c", "d", "e") 

x <- 9:100 

x <- c(i+0i, 2+4i) 

You can also create vectors as sequence of numbers 

series <- 1:10 

seq(10) 

seq(1, 10, by = 0.1) 

Other objects 

Inf is infinity. You can have positive or negative infinity. 

 1/0 

# [1] Inf 

 1/Inf 

# [1] 0 

NaN means Not a number. it's an undefined value. 

0/0 

NaN. 

Each object has an attribute. Attributes can be part of an object of R. These include 

 names 

 dimnames 

 length 

 class 



 attributes (contain metadata) 

For a vector, length(vector_name) is just the total number of elements. 

Vectors may only have one type 

R will create a resulting vector that is the least common denominator. The coercion 

will move towards the one that's easiest to coerce to. 

Guess what the following do without running them first 

xx <- c(1.7, "a") 

xx <- c(TRUE, 2) 

xx <- c("a", TRUE) 

This is called implicit coercion. 

The coersion rule goes logical -> integer -> numeric -> complex -> character. 

You can also coerce vectors explicitly using the as.<class_name>. Example 

as.numeric() 

as.character() 

When you coerce an existing numeric vector with as.numeric(), it does nothing. 

x <- 0:6 

as.numeric(x) 

as.logical(x) 

as.character(x) 

as.complex(x) 

Sometimes coercions, especially nonsensical ones won't work. 

x <- c("a", "b", "c") 

as.numeric(x) 

as.logical(x) 

# both don't work 

Sometimes there is implicit conversion 

1 < "2" 

# TRUE 

"1" > 2 

# FALSE 

1 < "a" 

# TRUE 

Matrix 

Matrices are a special vector in R. They are not a separate class of object but 

simply a vector but now with dimensions added on to it. Matrices have rows and 

columns. 

m <- matrix(nrow = 2, ncol = 2) 

m 

dim(m) 

same as 



attributes(m) 

Matrices are constructed columnwise. 

m <- matrix(1:6, nrow=2, ncol =3) 

Other ways to construct a matrix 

m <- 1:10 

dim(m) <- c(2,5) 

This takes a vector and transform into a matrix with 2 rows and 5 columns. 

Another way is to bind columns or rows using cbind() and rbind(). 

x <- 1:3 

y <- 10:12 

cbind(x,y) 

# or 

rbind(x,y) 

 

List 

In R lists act as containers. Unlike atomic vectors, its contents are not restricted to 

a single mode and can encompass any data type. Lists are sometimes called 

recursive vectors, because a list can contain other lists. This makes them 

fundamentally different from atomic vectors. 

List is a special vector. Each element can be a different class. 

Create lists using list or coerce other objects using as.list() 

x <- list(1, "a", TRUE, 1+4i) 

x <- 1:10 

x <- as.list(x) 

length(x) 

What is the class of x[1]? how about x[[1]]? 

xlist <- list(a = "Rich FitzJohn", b = 1:10, data = head(iris)) 

what is the length of this object? what about its structure? 

List can contain as many lists nested inside. 

temp <- list(list(list(list()))) 

temp 

is.recursive(temp) 

Lists are extremely useful inside functions. You can "staple" together lots of 

different kinds of results into a single object that a function can return. 

It doesn't print out like a vector. Prints a new line for each element. 



Elements are indexed by double brackets. Single brackets will still return another 

list. 

 

Factors 

Factors are special vectors that represent categorical data. Factors can be ordered 

or unordered and are important when for modelling functions such 

as lm() and glm() and also in plot methods. 

Factors can only contain pre-defined values. 

Factors are pretty much integers that have labels on them. While factors look (and 

often behave) like character vectors, they are actually integers under the hood, and 

you need to be careful when treating them like strings. Some string methods will 

coerce factors to strings, while others will throw an error. 

Sometimes factors can be left unordered. Example: male, female 

Other times you might want factors to be ordered (or ranked). Example: low, 

medium, high. 

Underlying it's represented by numbers 1,2,3. 

They are better than using simple integer labels because factors are what are called 

self describing. male and female is more descriptive than 1s and 2s. Helpful when 

there is no additional metadata. 

Which is male? 1 or 2? You wouldn't be able to tell with just integer data. Factors 

have this information built in. 

Factors can be created with factor(). Input is a character vector. 

x <- factor(c("yes", "no", "no", "yes", "yes")) 

x 

table(x) will return a frequency table. 

unclass(x) strips out the class information. 

In modelling functions, important to know what baseline levels is. This is the first 

factor but by default the ordering is determined by alphabetical order of words 

entered. You can change this by specifying the levels. 

x <- factor(c("yes", "no", "yes"), levels = c("yes", "no")) 

Data frame 

A data frame is a very important data type in R. It's pretty much the de facto data 

structure for most tabular data and what we use for statistics. 



data frames can have additional attributes such as rownames(). This can be useful 

for annotating data, like subject_id or sample_id. But most of the time they are not 

used. 

e.g. rownames() useful for annotating data. subject names. other times they are not 

useful. 

 Data frames Usually created by read.csv and read.table. 

 Can convert to matrix with data.matrix() 

 Coercion will force and not always what you expect. 

 Can also create with data.frame() function. 

With and data frame, you can do nrow(df) and ncol(df) rownames are usually 1..n. 

Combining data frames 

df <- data.frame(id = letters[1:10], x = 1:10, y = rnorm(10)) 

> df 

   id  x          y 

1   a  1 -0.3913992 

2   b  2 -0.8607609 

3   c  3  1.1234612 

4   d  4 -0.8283688 

5   e  5 -0.8785586 

6   f  6  0.2116839 

7   g  7 -0.3795995 

8   h  8 -0.5992272 

9   i  9  0.3203085 

10  j 10  0.2901185 

cbind(df, data.frame(z = 4)) 

When you combine column wise, only row numbers need to match. If you are 

adding a vector, it will get repeated. 

Useful functions head() - see first 5 rows tail() - see last 5 rows dim() - see 

dimensions nrow() - number of rows ncol() - number of columns str() - structure 

of each column names() - will list column names for a data.frame (or any object 

really). 

A data frame is a special type of list where every element of a list has same length. 

See that it is actually a special list: 

> is.list(iris) 

[1] TRUE 

> class(iris) 

[1] "data.frame" 

 > -- 

Naming objects 

Other R objects can also have names not just true for data.frames. Adding names is 

helpful since it's useful for readable code and self describing objects. 

x <- 1:3 

names(x) <- c("rich", "daniel", "diego") 



x 

Lists can also have names. 

x <- as.list(1:10) 

names(x) <- letters[seq(x)] 

x 

Finally matrices can have names and these are called dimnames 

m <- matrix(1:4, nrow = 2) 

dimnames(m) <- list(c("a", "b"), c("c", "d")) 

# first element = rownames 

# second element = colnames 

 

Missing values 

denoted by NA and/or NaN for undefined mathematical operations. 

is.na() 

is.nan() 

check for both. 

NA values have a class. So you can have both an integer NA and a missing 

character NA. 

NaN is also NA. But not the other way around. 

x <- c(1,2, NA, 4, 5) 

is.na(x) returns logical. shows third 

is.nan(x) # none are NaN. 

x <- c(1,2, NA, NaN, 4, 5) 

is.na(x) shows 2 TRUE. is.nan(x) shows 1 TRUE 

Missing values are very important in R, but can be very frustrating for new users. 

What do these do? What should they do? ~~~ 1 == NA NA == NA ~~~ 

How can we do that sort of comparison? 

Diagnostic functions in R 

Super helpful functions 

 str() Compactly display the internal structure of an R object. Perhaps the 

most uesful diagnostic function in R. 

 names() Names of elements within an object 

 class() Retrieves the internal class of an object 



 mode() Get or set the type or storage mode of an object. 

 length() Retrieve or set the dimension of an object. 

 dim() Retrieve or set the dimension of an object. 

 R --vanilla - Allows you to start a clean session of R. A great way to test 

whether your code is reproducible. 

 sessionInfo() Print version information about R and attached or loaded 

packages. 

 options() Allow the user to set and examine a variety of global options 

which affect the way in which R computes and displays its results. 

str() is your best friend 

str is short for structure. You can use it on any object. Try the following: 

x <- 1:10 

class(x) 

mode(x) 

str(x) 

sessionInfo(): Print version information about R and attached or loaded 

packages. 

 

R Operators 
R has several operators to perform tasks including arithmetic, logical and bitwise 

operations.  

R has many operators to carry out different mathematical and logical operations. 

Operators in R can mainly be classified into the following categories. 

Type of operators in R 

Arithmetic operators 

Relational operators 

Logical operators 

Assignment operators 

 

R Arithmetic Operators 

https://www.programiz.com/r-programming/operator#arithmetic_operators
https://www.programiz.com/r-programming/operator#relational_operators
https://www.programiz.com/r-programming/operator#logical_operators
https://www.programiz.com/r-programming/operator#assignment_operators


These operators are used to carry out mathematical operations like addition and 
multiplication. Here is a list of arithmetic operators available in R. 

Arithmetic Operators in R 

Operator Description 

+ Addition 

- Subtraction 

* Multiplication 

/ Division 

^ Exponent 

%% Modulus (Remainder from division) 

%/% Integer Division 

An example run 

> x <- 5 

> y <- 16 

 

> x+y 

[1] 21 

 

> x-y 

[1] -11 

 

> x*y 

[1] 80 

 

> y/x 

[1] 3.2 



 

> y%/%x 

[1] 3 

 

> y%%x 

[1] 1 

 

> y^x 

[1] 1048576 

 

R Relational Operators 

Relational operators are used to compare between values. Here is a list of relational 
operators available in R. 

Relational Operators in R 

Operator Description 

< Less than 

> Greater than 

<= Less than or equal to 

>= Greater than or equal to 

== Equal to 

!= Not equal to 

An example run 

> x <- 5 

> y <- 16 

 



> x<y 

[1] TRUE 

 

> x>y 

[1] FALSE 

 

> x<=5 

[1] TRUE 

 

> y>=20 

[1] FALSE 

 

> y == 16 

[1] TRUE 

 

> x != 5 

[1] FALSE 

 

Operation on Vectors 

The above mentioned operators work on vectors. The variables used above were in 
fact single element vectors. 

We can use the function c() (as in concatenate) to make vectors in R. 

All operations are carried out in element-wise fashion. Here is an example. 

> x <- c(2,8,3) 

> y <- c(6,4,1) 

 

> x+y 

[1]  8 12  4 

 

> x>y 

[1] FALSE  TRUE  TRUE 

https://www.programiz.com/r-programming/vector


When there is a mismatch in length (number of elements) of operand vectors, the 
elements in shorter one is recycled in a cyclic manner to match the length of the 
longer one. 

R will issue a warning if the length of the longer vector is not an integral multiple of 
the shorter vector. 

> x <- c(2,1,8,3) 

> y <- c(9,4) 

 

> x+y # Element of y is recycled to 9,4,9,4 

[1] 11  5 17  7 

 

> x-1 # Scalar 1 is recycled to 1,1,1,1 

[1] 1 0 7 2 

 

> x+c(1,2,3) 

[1]  3  3 11  4 

Warning message: 

In x + c(1, 2, 3) : 

 longer object length is not a multiple of shorter object length 

 

R Logical Operators 

Logical operators are used to carry out Boolean operations like AND, OR etc. 

Logical Operators in R 

Operator Description 

! Logical NOT 

& Element-wise logical AND 

&& Logical AND 

| Element-wise logical OR 

|| Logical OR 



Operators & and | perform element-wise operation producing result having length of 
the longer operand. 

But && and || examines only the first element of the operands resulting into a single 
length logical vector. 

Zero is considered FALSE and non-zero numbers are taken as TRUE. An example run. 

> x <- c(TRUE,FALSE,0,6) 

> y <- c(FALSE,TRUE,FALSE,TRUE) 

 

> !x 

[1] FALSE  TRUE  TRUE FALSE 

 

> x&y 

[1] FALSE FALSE FALSE  TRUE 

 

> x&&y 

[1] FALSE 

 

> x|y 

[1]  TRUE  TRUE FALSE  TRUE 

 

> x||y 

[1] TRUE 

 

R Assignment Operators 

These operators are used to assign values to variables. 

Assignment Operators in R 

Operator Description 

<-, <<-, = Leftwards assignment 

->, ->> Rightwards assignment 

The operators <- and = can be used, almost interchangeably, to assign to variable in 
the same environment. 



The <<- operator is used for assigning to variables in the parent environments (more 
like global assignments). The rightward assignments, although available are rarely 
used. 

> x <- 5 

> x 

[1] 5 

 

> x = 9 

> x 

[1] 9 

 

> 10 -> x 

> x 

[1] 10 

Example: Hello World Program 
> # We can use the print() function 

> print("Hello World!") 

[1] "Hello World!" 

 

> # Quotes can be suppressed in the output 

> print("Hello World!", quote = FALSE) 

[1] Hello World! 

 

> # If there are more than 1 item, we can concatenate using paste() 

> print(paste("How","are","you?")) 

[1] "How are you?" 

 

R Program to Take Input From 

User 
In this example, you'll learn to take input from a user using readline() function. 



When we are working with R in an interactive session, we can 
use readline() function to take input from the user (terminal). 

This function will return a single element character vector. 

So, if we want numbers, we need to do appropriate conversions. 

 

Example: Take input from user 
my.name <- readline(prompt="Enter name: ") 

my.age <- readline(prompt="Enter age: ") 

 

# convert character into integer 

my.age <- as.integer(my.age) 

 

print(paste("Hi,", my.name, "next year you will be", my.age+1, 
"years old.")) 

Output 

Enter name: Mary 

Enter age: 17 

[1] "Hi, Mary next year you will be 18 years old." 

Here, we see that with the prompt argument we can choose to display an appropriate 
message for the user. 

In the above example, we convert the input age, which is a character vector into 
integer using the function as.integer(). 

This is necessary for the purpose of doing further calculations. 

Example: Multiplication Table 
# Program to find the multiplication 

# table (from 1 to 10) 

# of a number input by the user 

 

# take input from the user 



num = as.integer(readline(prompt = "Enter a number: ")) 

 

# use for loop to iterate 10 times 

for(i in 1:10) { 

    print(paste(num,'x', i, '=', num*i)) 

} 

Vector is a basic data structure in R. It contains element of the same type. The data 
types can be logical, integer, double, character, complex or raw. 

A vector's type can be checked with the typeof() function. 

Another important property of a vector is its length. This is the number of elements in 
the vector and can be checked with the function length(). 

 

How to create a Vector in R 
programming? 

Vectors are generally created using the c() function. 

Since, a vector must have elements of the same type, this function will try and 
coerce elements to the same type, if they are different. 

Coercion is from lower to higher types from logical to integer to double to character. 

> x <- c(1, 5, 4, 9, 0) 

> typeof(x) 

[1] "double" 

> length(x) 

[1] 5 

 

> x <- c(1, 5.4, TRUE, "hello") 

> x 

[1] "1"     "5.4"   "TRUE"  "hello" 

> typeof(x) 

[1] "character" 

If we want to create a vector of consecutive numbers, the : operator is very helpful. 

https://www.programiz.com/r-programming/function


Example 1: Creating a vector using : operator 

> x <- 1:7; x 

[1] 1 2 3 4 5 6 7 

 

> y <- 2:-2; y 

[1]  2  1  0 -1 -2 

More complex sequences can be created using the seq() function, like defining 
number of points in an interval, or the step size. 

Example 2: Creating a vector using seq() function 

> seq(1, 3, by=0.2)          # specify step size 

[1] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

 

> seq(1, 5, length.out=4)    # specify length of the vector 

[1] 1.000000 2.333333 3.666667 5.000000 

> seq(from = 1, by = 2, length.out = 10) 

 [1]  1  3  5  7  9 11 13 15 17 19 

> seq(f = 1, b = 5, leng = 10) 

 [1]  1  6 11 16 21 26 31 36 41 46 

> seq(0, 1, length.out = 11) 

 [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

> seq(1, 9, by = 2)     # matches 'end' 

[1] 1 3 5 7 9 

> seq(17) # same as 1:17, or even better seq_len(17) 

 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 



> seq_len(17) 

 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 

> seq(1, 6, by = 3) 

[1] 1 4 

> seq(1.575, 5.125, by = 0.05) 

 [1] 1.575 1.625 1.675 1.725 1.775 1.825 1.875 1.925 1.975 2.025 
2.075 2.125 

[13] 2.175 2.225 2.275 2.325 2.375 2.425 2.475 2.525 2.575 2.625 
2.675 2.725 

[25] 2.775 2.825 2.875 2.925 2.975 3.025 3.075 3.125 3.175 3.225 
3.275 3.325 

[37] 3.375 3.425 3.475 3.525 3.575 3.625 3.675 3.725 3.775 3.825 
3.875 3.925 

[49] 3.975 4.025 4.075 4.125 4.175 4.225 4.275 4.325 4.375 4.425 
4.475 4.525 

[61] 4.575 4.625 4.675 4.725 4.775 4.825 4.875 4.925 4.975 5.025 
5.075 5.125

 

How to access Elements of a Vector? 

Elements of a vector can be accessed using vector indexing. The vector used for 
indexing can be logical, integer or character vector. 

 

Using integer vector as index 

Vector index in R starts from 1, unlike most programming languages where index 
start from 0. 

We can use a vector of integers as index to access specific elements. 

We can also use negative integers to return all elements except that those specified. 



But we cannot mix positive and negative integers while indexing and real numbers, if 
used, are truncated to integers. 

> x 

[1]  0  2  4  6  8 10 

 

> x[3]           # access 3rd element 

[1] 4 

 

> x[c(2, 4)]     # access 2nd and 4th element 

[1] 2 6 

 

> x[-1]          # access all but 1st element 

[1]  2  4  6  8 10 

 

> x[c(2, -4)]    # cannot mix positive and negative integers 

Error in x[c(2, -4)] : only 0's may be mixed with negative 
subscripts 

 

> x[c(2.4, 3.54)]    # real numbers are truncated to integers 

[1] 2 4 

 

Using logical vector as index 

When we use a logical vector for indexing, the position where the logical vector 
is TRUE is returned. 

This useful feature helps us in filtering of vector as shown below. 

> x[c(TRUE, FALSE, FALSE, TRUE)] 

[1] -3  3 

 

> x[x < 0]  # filtering vectors based on conditions 

[1] -3 -1 

 

> x[x > 0] 

[1] 3 



In the above example, the expression x>0 will yield a logical vector (FALSE, FALSE, 
FALSE, TRUE) which is then used for indexing. 

 

Using character vector as index 

This type of indexing is useful when dealing with named vectors. We can name each 
elements of a vector. 

> x <- c("first"=3, "second"=0, "third"=9) 

> names(x) 

[1] "first"  "second" "third"  

 

> x["second"] 

second  

    0  

 

> x[c("first", "third")] 

first third  

   3     9 

 

How to modify a vector in R? 

We can modify a vector using the assignment operator. 

We can use the techniques discussed above to access specific elements and modify 
them. 

If we want to truncate the elements, we can use reassignments. 

> x 

[1] -3 -2 -1  0  1  2 

 

> x[2] <- 0; x        # modify 2nd element 

[1] -3  0 -1  0  1  2 

 

> x[x<0] <- 5; x   # modify elements less than 0 

[1] 5 0 5 0 1 2 



 

> x <- x[1:4]; x      # truncate x to first 4 elements 

[1] 5 0 5 0 

 

How to delete a Vector? 

We can delete a vector by simply assigning a NULL to it. 

> x 

[1] -3 -2 -1  0  1  2 

> x <- NULL 

 

> x 

NULL 

> x[4] 

NULL 

 

R Program to Sort a Vector 

Sorting of vectors can be done using the sort() function. 

By default, it sorts in ascending order. To sort in descending order we can 
pass decreasing=TRUE. 

Note that sort is not in-place. This means that the original vector is not effected 
(sorted). 

Only a sorted version of it is returned. 

 

Example: Sort a Vector 
> x 

[1] 7 1 8 3 2 6 5 2 2 4 

 

> # sort in ascending order 

> sort(x) 



[1] 1 2 2 2 3 4 5 6 7 8 

 

> # sort in descending order 

> sort(x, decreasing=TRUE) 

[1] 8 7 6 5 4 3 2 2 2 1 

 

> # vector x remains unaffected 

> x 

[1] 7 1 8 3 2 6 5 2 2 4 

Sometimes we would want the index of the sorted vector instead of the values. In 
such case we can use the function order(). 

> order(x) 

[1]  2  5  8  9  4 10  7  6  1  3 

 

> order(x, decreasing=TRUE) 

[1]  3  1  6  7 10  4  5  8  9  2 

 

> x[order(x)]    # this will also sort x 

[1] 1 2 2 2 3 4 5 6 7 8 

R Program to Find Minimum and 

Maximum 
In this example, to find the minimum and maximum numbers from a list using min() 

and max() function respectively and to use the range() function. 

We can find the minimum and the maximum of a vector using the min() or 
the max()function. 

A function called range() is also available which returns the minimum and maximum 
in a two element vector. 

 

Example: Find Minimum and Maximum 
> x 

[1]  5  8  3  9  2  7  4  6 10 



 

> # find the minimum 

> min(x) 

[1] 2 

 

> # find the maximum 

> max(x) 

[1] 10 

 

> # find the range 

> range(x) 

[1]  2 10 

If we want to find where the minimum or maximum is located, i.e. the index instead 
of the actual value, then we can use which.min() and which.max() functions. 

Note that these functions will return the index of the first minimum or maximum in 
case multiple of them exists. 

> x 

[1]  5  8  3  9  2  7  4  6 10 

 

> # find index of the minimum 

> which.min(x) 

[1] 5 

 

> # find index of the minimum 

> which.max(x) 

[1] 9 

 

> # alternate way to find the minimum 

> x[which.min(x)] 

[1] 2 

 



R Matrix 
In this to work with matrix in R. You will learn to create and modify matrix, and access 

matrix elements. 

Matrix is a two dimensional data structure in R programming. 

Matrix is similar to vectors but additionally contains the dimension attribute. All 
attributes of an object can be checked with the attributes() function (dimension can 
be checked directly with the dim() function). 

We can check if a variable is a matrix or not with the class() function. 

> a 

    [,1] [,2] [,3] 

[1,]    1    4    7 

[2,]    2    5    8 

[3,]    3    6    9 

 

> class(a) 

[1] "matrix" 

 

> attributes(a) 

$dim 

[1] 3 3 

 

> dim(a) 

[1] 3 3 

Let us consider a matrix as above. 

 

How to create a matrix in R 
programming? 

Matrix can be created using the matrix() function. 

Dimension of the matrix can be defined by passing appropriate value for 
arguments nrowand ncol. 



Providing value for both dimension is not necessary. If one of the dimension is 
provided, the other is inferred from length of the data. 

> matrix(1:9, nrow = 3, ncol = 3) 

    [,1] [,2] [,3] 

[1,]    1    4    7 

[2,]    2    5    8 

[3,]    3    6    9 

 

> # same result is obtained by providing only one dimension 

> matrix(1:9, nrow = 3) 

    [,1] [,2] [,3] 

[1,]    1    4    7 

[2,]    2    5    8 

[3,]    3    6    9 

We can see that the matrix is filled column-wise. This can be reversed to row-wise 
filling by passing TRUE to the argument byrow. 

> matrix(1:9, nrow=3, byrow=TRUE)    # fill matrix row-wise 

    [,1] [,2] [,3] 

[1,]    1    2    3 

[2,]    4    5    6 

[3,]    7    8    9 

In all cases, however, a matrix is stored in column-major order internally as we will 
see in the subsequent sections. 

It is possible to name the rows and columns of matrix during creation by passing a 2 
element list to the argument dimnames. 

> x <- matrix(1:9, nrow = 3, dimnames = list(c("X","Y","Z"), 
c("A","B","C"))) 

> x 

 A B C 

X 1 4 7 

Y 2 5 8 

Z 3 6 9 

These names can be accessed or changed with two helpful 
functions colnames() and rownames(). 



> colnames(x) 

[1] "A" "B" "C" 

> rownames(x) 

[1] "X" "Y" "Z" 

 

> # It is also possible to change names 

> colnames(x) <- c("C1","C2","C3") 

> rownames(x) <- c("R1","R2","R3") 

 

> x 

  C1 C2 C3 

R1  1  4  7 

R2  2  5  8 

R3  3  6  9 

Another way of creating a matrix is by using functions cbind() and rbind() as in 
column bind and row bind. 

> cbind(c(1,2,3),c(4,5,6)) 

    [,1] [,2] 

[1,]    1    4 

[2,]    2    5 

[3,]    3    6 

 

> rbind(c(1,2,3),c(4,5,6)) 

    [,1] [,2] [,3] 

[1,]    1    2    3 

[2,]    4    5    6 

Finally, you can also create a matrix from a vector by setting its dimension 
using dim(). 

> x <- c(1,2,3,4,5,6) 

> x 

[1] 1 2 3 4 5 6 

> class(x) 

[1] "numeric" 

 



> dim(x) <- c(2,3) 

> x 

    [,1] [,2] [,3] 

[1,]    1    3    5 

[2,]    2    4    6 

> class(x) 

[1] "matrix" 

 

How to access Elements of a matrix? 

We can access elements of a matrix using the square bracket [ indexing method. 
Elements can be accessed as var[row, column]. Here rows and columns are vectors. 

Using integer vector as index 

 

We specify the row numbers and column numbers as vectors and use it for indexing. 

If any field inside the bracket is left blank, it selects all. 

We can use negative integers to specify rows or columns to be excluded. 

> x 

    [,1] [,2] [,3] 

[1,]    1    4    7 

[2,]    2    5    8 

[3,]    3    6    9 

 

> x[c(1,2),c(2,3)]    # select rows 1 & 2 and columns 2 & 3 

    [,1] [,2] 

[1,]    4    7 

[2,]    5    8 

 

> x[c(3,2),]    # leaving column field blank will select entire 
columns 

    [,1] [,2] [,3] 

[1,]    3    6    9 



[2,]    2    5    8 

 

> x[,]    # leaving row as well as column field blank will select 
entire matrix 

    [,1] [,2] [,3] 

[1,]    1    4    7 

[2,]    2    5    8 

[3,]    3    6    9 

 

> x[-1,]    # select all rows except first 

    [,1] [,2] [,3] 

[1,]    2    5    8 

[2,]    3    6    9 

One thing to notice here is that, if the matrix returned after indexing is a row matrix or 
column matrix, the result is given as a vector. 

> x[1,] 

[1] 1 4 7 

> class(x[1,]) 

[1] "integer" 

This behavior can be avoided by using the argument drop = FALSE while indexing. 

> x[1,,drop=FALSE]  # now the result is a 1X3 matrix rather than a 
vector 

    [,1] [,2] [,3] 

[1,]    1    4    7 

> class(x[1,,drop=FALSE]) 

[1] "matrix" 

It is possible to index a matrix with a single vector. 

While indexing in such a way, it acts like a vector formed by stacking columns of the 
matrix one after another. The result is returned as a vector. 

> x 

    [,1] [,2] [,3] 

[1,]    4    8    3 

[2,]    6    0    7 



[3,]    1    2    9 

 

> x[1:4] 

[1] 4 6 1 8 

 

> x[c(3,5,7)] 

[1] 1 0 3 

Using logical vector as index 

 

Two logical vectors can be used to index a matrix. In such situation, rows and 
columns where the value is TRUE is returned. These indexing vectors are recycled if 
necessary and can be mixed with integer vectors. 

> x 

    [,1] [,2] [,3] 

[1,]    4    8    3 

[2,]    6    0    7 

[3,]    1    2    9 

 

> x[c(TRUE,FALSE,TRUE),c(TRUE,TRUE,FALSE)] 

    [,1] [,2] 

[1,]    4    8 

[2,]    1    2 

 

> x[c(TRUE,FALSE),c(2,3)]    # the 2 element logical vector is 
recycled to 3 element vector 

    [,1] [,2] 

[1,]    8    3 

[2,]    2    9 

It is also possible to index using a single logical vector where recycling takes place if 
necessary. 

> x[c(TRUE, FALSE)] 

[1] 4 1 0 3 9 

In the above example, the matrix x is treated as vector formed by stacking columns 
of the matrix one after another, i.e., (4,6,1,8,0,2,3,7,9). 



The indexing logical vector is also recycled and thus alternating elements are 
selected. This property is utilized for filtering of matrix elements as shown below. 

> x[x>5]    # select elements greater than 5 

[1] 6 8 7 9 

 

> x[x%%2 == 0]    # select even elements 

[1] 4 6 8 0 2 

Using character vector as index 

 

Indexing with character vector is possible for matrix with named row or column. This 
can be mixed with integer or logical indexing. 

> x 

    A B C 

[1,] 4 8 3 

[2,] 6 0 7 

[3,] 1 2 9 

 

> x[,"A"] 

[1] 4 6 1 

 

> x[TRUE,c("A","C")] 

    A C 

[1,] 4 3 

[2,] 6 7 

[3,] 1 9 

 

> x[2:3,c("A","C")] 

    A C 

[1,] 6 7 

[2,] 1 9 

 

How to modify a matrix in R? 



We can combine assignment operator with the above learned methods for accessing 
elements of a matrix to modify it. 

> x 

    [,1] [,2] [,3] 

[1,]    1    4    7 

[2,]    2    5    8 

[3,]    3    6    9 

 

> x[2,2] <- 10; x    # modify a single element 

    [,1] [,2] [,3] 

[1,]    1    4    7 

[2,]    2   10    8 

[3,]    3    6    9 

 

> x[x<5] <- 0; x    # modify elements less than 5 

    [,1] [,2] [,3] 

[1,]    0    0    7 

[2,]    0   10    8 

[3,]    0    6    9 

A common operation with matrix is to transpose it. This can be done with the 
function t(). 

> t(x)    # transpose a matrix 

    [,1] [,2] [,3] 

[1,]    0    0    0 

[2,]    0   10    6 

[3,]    7    8    9 

We can add row or column using rbind() and cbind() function respectively. 
Similarly, it can be removed through reassignment. 

> cbind(x, c(1, 2, 3))    # add column 

    [,1] [,2] [,3] [,4] 

[1,]    0    0    7    1 

[2,]    0   10    8    2 

[3,]    0    6    9    3 

 



> rbind(x,c(1,2,3))    # add row 

    [,1] [,2] [,3] 

[1,]    0    0    7 

[2,]    0   10    8 

[3,]    0    6    9 

[4,]    1    2    3 

 

> x <- x[1:2,]; x    # remove last row 

    [,1] [,2] [,3] 

[1,]    0    0    7 

[2,]    0   10    8 

Dimension of matrix can be modified as well, using the dim() function. 

> x 

    [,1] [,2] [,3] 

[1,]    1    3    5 

[2,]    2    4    6 

 

> dim(x) <- c(3,2); x    # change to 3X2 matrix 

    [,1] [,2] 

[1,]    1    4 

[2,]    2    5 

[3,]    3    6 

 

> dim(x) <- c(1,6); x    # change to 1X6 matrix 

    [,1] [,2] [,3] [,4] [,5] [,6] 

[1,]    1    2    3    4    5    6 

R Lists 

List is a data structure having components of mixed data types. 

A vector having all elements of the same type is called atomic vector but a vector 
having elements of different type is called list. 

We can check if it's a list with typeof() function and find its length using length(). 

https://www.programiz.com/r-programming/vector


Following is an example of a list having three components each of different data 
type. 

> x 

$a 

[1] 2.5 

 

$b 

[1] TRUE 

 

$c 

[1] 1 2 3 

 

> typeof(x) 

[1] "list" 

 

> length(x) 

[1] 3 

 

How to create a list in R programming? 

List can be created using the list() function. 

> x <- list("a" = 2.5, "b" = TRUE, "c" = 1:3) 

Here, we create a list x, of three components with data 
types double, logical and integervector respectively. 

Its structure can be examined with the str() function. 

> str(x) 

List of 3 

$ a: num 2.5 

$ b: logi TRUE 

$ c: int [1:3] 1 2 3 

In this example, a, b and c are called tags which makes it easier to reference the 
components of the list. 



However, tags are optional. We can create the same list without the tags as follows. 
In such scenario, numeric indices are used by default. 

> x <- list(2.5,TRUE,1:3) 

 

> x 

[[1]] 

[1] 2.5 

 

[[2]] 

[1] TRUE 

 

[[3]] 

[1] 1 2 3 

 

How to access components of a list? 

Lists can be accessed in similar fashion to vectors. Integer, logical or character 
vectors can be used for indexing. Let us consider a list as follows. 

> x 

$name 

[1] "John" 

 

$age 

[1] 19 

 

$speaks 

[1] "English" "French"  

 

> x[c(1:2)]    # index using integer vector 

$name 

[1] "John" 

 

$age 

[1] 19 

 



> x[-2]        # using negative integer to exclude second component 

$name 

[1] "John" 

 

$speaks 

[1] "English" "French"  

 

> x[c(T,F,F)]  # index using logical vector 

$name 

[1] "John" 

 

> x[c("age","speaks")]    # index using character vector 

$age 

[1] 19 

 

$speaks 

[1] "English" "French"  

Indexing with [ as shown above will give us sublist not the content inside the 
component. To retrieve the content, we need to use [[. 

However, this approach will allow us to access only a single component at a time. 

> x["age"] 

$age 

[1] 19 

 

> typeof(x["age"])    # single [ returns a list 

[1] "list" 

 

> x[["age"]]    # double [[ returns the content 

[1] 19 

 

> typeof(x[["age"]]) 

[1] "double" 

An alternative to [[, which is used often while accessing content of a list is 
the $ operator. They are both the same except that $ can do partial matching on 
tags. 



> x$name    # same as x[["name"]] 

[1] "John" 

 

> x$a                  # partial matching, same as x$ag or x$age 

[1] 19 

 

> x[["a"]]             # cannot do partial match with [[ 

NULL 

 

> # indexing can be done recursively 

> x$speaks[1] 

[1] "English" 

 

> x[["speaks"]][2] 

[1] "French" 

 

How to modify a list in R? 

We can change components of a list through reassignment. We can choose any of 
the component accessing techniques discussed above to modify it. 

Notice below that modification causes reordering of components. 

> x[["name"]] <- "Clair"; x 

$age 

[1] 19 

 

$speaks 

[1] "English" "French"  

 

$name 

[1] "Clair" 

 



How to add components to a list? 

Adding new components is easy. We simply assign values using new tags and it will 
pop into action. 

> x[["married"]] <- FALSE 

> x 

$age 

[1] 19 

 

$speaks 

[1] "English" "French"  

 

$name 

[1] "Clair" 

 

$married 

[1] FALSE 

 

How to delete components from a list? 

We can delete a component by assigning NULL to it. 

> x[["age"]] <- NULL 

> str(x) 

List of 3 

$ speaks : chr [1:2] "English" "French" 

$ name   : chr "Clair" 

$ married: logi FALSE 

 

> x$married <- NULL 

> str(x) 

List of 2 

$ speaks: chr [1:2] "English" "French" 

$ name  : chr "Clair" 



R Data Frame 

Data frame is a two dimensional data structure in R. It is a special case of 
a list which has each component of equal length. 

Each component form the column and contents of the component form the rows. 

 

Check if a variable is a data frame using class() 

We can check if a variable is a data frame or not using the class() function. 

> x 

 SN Age Name 

1  1  21 John 

2  2  15 Dora 

 

> typeof(x)    # data frame is a special case of  list 

[1] "list" 

 

> class(x) 

[1] "data.frame" 

In this example, x can be considered as a list of 3 components with each component 
having a two element vector. Some useful functions to know more about a data 
frame are given below. 

 

Functions of data frame 

> names(x) 

[1] "SN"   "Age"  "Name" 

 

> ncol(x) 

[1] 3 

 

> nrow(x) 

[1] 2 

 

https://www.programiz.com/r-programming/list


> length(x)    # returns length of the list, same as ncol() 

[1] 3 

 

How to create a Data Frame in R? 

We can create a data frame using the data.frame() function. 

For example, the above shown data frame can be created as follows. 

> x <- data.frame("SN" = 1:2, "Age" = c(21,15), "Name" = 
c("John","Dora")) 

 

> str(x)    # structure of x 

'data.frame':   2 obs. of  3 variables: 

$ SN  : int  1 2 

$ Age : num  21 15 

$ Name: Factor w/ 2 levels "Dora","John": 2 1 

Notice above that the third column, Name is of type factor, instead of a 
character vector. 

By default, data.frame() function converts character vector into factor. 

To suppress this behavior, we can pass the argument stringsAsFactors=FALSE. 

> x <- data.frame("SN" = 1:2, "Age" = c(21,15), "Name" = c("John", 
"Dora"), stringsAsFactors = FALSE) 

 

> str(x)    # now the third column is a character vector 

'data.frame':   2 obs. of  3 variables: 

$ SN  : int  1 2 

$ Age : num  21 15 

$ Name: chr  "John" "Dora" 

Many data input functions of R 
like, read.table(), read.csv(), read.delim(), read.fwf() also read data into a data 
frame. 

 

https://www.programiz.com/r-programming/factor
https://www.programiz.com/r-programming/vector


How to access Components of a Data 
Frame? 

Components of data frame can be accessed like a list or like a matrix. 

 

Accessing like a list 

We can use either [, [[ or $ operator to access columns of data frame. 

> x["Name"] 

 Name 

1 John 

2 Dora 

 

> x$Name 

[1] "John" "Dora" 

 

> x[["Name"]] 

[1] "John" "Dora" 

 

> x[[3]] 

[1] "John" "Dora" 

Accessing with [[ or $ is similar. However, it differs for [ in that, indexing with [ will 
return us a data frame but the other two will reduce it into a vector. 

 

Accessing like a matrix 

Data frames can be accessed like a matrix by providing index for row and column. 

To illustrate this, we use datasets already available in R. Datasets that are available 
can be listed with the command library(help = "datasets"). 

We will use the trees dataset which contains Girth, Height and Volume for Black 
Cherry Trees. 

A data frame can be examined using functions like str() and head(). 

> str(trees) 



'data.frame':   31 obs. of 3 variables: 

$ Girth : num  8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 11.2 ... 

$ Height: num  70 65 63 72 81 83 66 75 80 75 ... 

$ Volume: num  10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9 ... 

 

> head(trees,n=3) 

 Girth Height Volume 

1   8.3     70   10.3 

2   8.6     65   10.3 

3   8.8     63   10.2 

We can see that trees is a data frame with 31 rows and 3 columns. We also display 
the first 3 rows of the data frame. 

Now we proceed to access the data frame like a matrix. 

> trees[2:3,]    # select 2nd and 3rd row 

 Girth Height Volume 

2   8.6     65   10.3 

3   8.8     63   10.2 

 

> trees[trees$Height > 82,]    # selects rows with Height greater 
than 82 

  Girth Height Volume 

6   10.8     83   19.7 

17  12.9     85   33.8 

18  13.3     86   27.4 

31  20.6     87   77.0 

 

> trees[10:12,2] 

[1] 75 79 76 

We can see in the last case that the returned type is a vector since we extracted 
data from a single column. 

This behavior can be avoided by passing the argument drop=FALSE as follows. 

> trees[10:12,2, drop = FALSE] 

  Height 

10     75 



11     79 

12     76 

 

How to modify a Data Frame in R? 

Data frames can be modified like we modified matrices through reassignment. 

> x 

 SN Age Name 

1  1  21 John 

2  2  15 Dora 

 

> x[1,"Age"] <- 20; x 

 SN Age Name 

1  1  20 John 

2  2  15 Dora 

 

Adding Components 

Rows can be added to a data frame using the rbind() function. 

> rbind(x,list(1,16,"Paul")) 

 SN Age Name 

1  1  20 John 

2  2  15 Dora 

3  1  16 Paul 

Similarly, we can add columns using cbind(). 

> cbind(x,State=c("NY","FL")) 

 SN Age Name State 

1  1  20 John    NY 

2  2  15 Dora    FL 

Since data frames are implemented as list, we can also add new columns through 
simple list-like assignments. 



> x 

 SN Age Name 

1  1  20 John 

2  2  15 Dora 

 

> x$State <- c("NY","FL"); x 

 SN Age Name State 

1  1  20 John    NY 

2  2  15 Dora    FL 

 

Deleting Component 

Data frame columns can be deleted by assigning NULL to it. 

> x$State <- NULL 

> x 

 SN Age Name 

1  1  20 John 

2  2  15 Dora 

Similarly, rows can be deleted through reassignments. 

> x <- x[-1,] 

> x 

 SN Age Name 

2  2  15 Dora 

R Factors 

Factor is a data structure used for fields that takes only predefined, finite number of 
values (categorical data). 

For example, a data field such as marital status may contain only values from single, 
married, separated, divorced, or widowed. 

In such case, we know the possible values beforehand and these predefined, distinct 
values are called levels. Following is an example of factor in R. 

> x 



[1] single  married married single 

Levels: married single 

Here, we can see that factor x has four elements and two levels. We can check if a 
variable is a factor or not using class() function. 

Similarly, levels of a factor can be checked using the levels() function. 

> class(x) 

[1] "factor" 

 

> levels(x) 

[1] "married" "single" 

 

How to create a factor in R? 

We can create a factor using the function factor(). Levels of a factor are inferred 
from the data if not provided. 

> x <- factor(c("single", "married", "married", "single"));  

> x  

[1] single  married married single 

Levels: married single 

 

> x <- factor(c("single", "married", "married", "single"), levels = 
c("single", "married", "divorced")); 

> x 

[1] single  married married single 

Levels: single married divorced 

We can see from the above example that levels may be predefined even if not used. 

Factors are closely related with vectors. In fact, factors are stored as integer vectors. 
This is clearly seen from its structure. 

> x <- factor(c("single","married","married","single")) 

> str(x) 

Factor w/ 2 levels "married","single": 2 1 1 2 

https://www.programiz.com/r-programming/vector


We see that levels are stored in a character vector and the individual elements are 
actually stored as indices. 

Factors are also created when we read non-numerical columns into a data frame. 

By default, data.frame() function converts character vector into factor. To suppress 
this behavior, we have to pass the argument stringsAsFactors = FALSE. 

 

How to access compoments of a factor? 

Accessing components of a factor is very much similar to that of vectors. 

> x 

[1] single  married married single 

Levels: married single 

 

> x[3]           # access 3rd element 

[1] married 

Levels: married single 

 

>  x[c(2, 4)]     # access 2nd and 4th element 

[1] married single 

Levels: married single 

 

> x[-1]          # access all but 1st element 

[1] married married single 

Levels: married single 

 

> x[c(TRUE, FALSE, FALSE, TRUE)]  # using logical vector 

[1] single single 

Levels: married single 

 

How to modify a factor? 

Components of a factor can be modified using simple assignments. However, we 
cannot choose values outside of its predefined levels. 



> x 

[1] single  married married single 

Levels: single married divorced 

 

> x[2] <- "divorced"    # modify second element;  x 

[1] single   divorced married  single   

Levels: single married divorced 

 

> x[3] <- "widowed"    # cannot assign values outside levels 

Warning message: 

In `[<-.factor`(`*tmp*`, 3, value = "widowed") : 

 invalid factor level, NA generated 

 

> x 

[1] single   divorced <NA>     single   

Levels: single married divorced 

A workaround to this is to add the value to the level first. 

> levels(x) <- c(levels(x), "widowed")    # add new level 

 

> x[3] <- "widowed" 

 

> x 

[1] single   divorced widowed  single   

Levels: single married divorced widowed 

R- Arrays 
 
Arrays are the R data objects which can store data in more than two dimensions. 

For example - If we create an array of dimension (2, 3, 4) then it creates 4 

rectangular matrices each with 2 rows and 3 columns. Arrays can store only 

data type. An array is created using the array() function. It takes vectors as 

input and uses the values in the dim parameter to create an array. 

array(data=NA, dim=length(data), dimnames=NULL) 

 
data: vector to fill the array 

dim: row and col numbers 

:  



...  

 
 
> x <- array(1:9) 

> x 

[1] 1 2 3 4 5 6 7 8 9 

 
 
> x <- array(1:9,c(3,3)) 

> x 

     [,1] [,2] [,3] 

[1,]    1    4    7 

[2,]    2    5    8 

[3,]    3    6    9 

 
 
> x <- 1:64 

> dim(x) <- c(2,4,8) #dim() converts the vector 

into array 

> is.array(x) 

[1] TRUE 

 
 
> x 

, , 1 

 

     [,1] [,2] [,3] [,4] 

[1,]    1    3    5    7 

[2,]    2    4    6    8 

 

, , 2 

 

     [,1] [,2] [,3] [,4] 

[1,]    9   11   13   15 

[2,]   10   12   14   16 

 

, , 3 

 

     [,1] [,2] [,3] [,4] 

[1,]   17   19   21   23 

[2,]   18   20   22   24 

 



, , 4 

 

     [,1] [,2] [,3] [,4] 

[1,]   25   27   29   31 

[2,]   26   28   30   32 

 

, , 5 

 

     [,1] [,2] [,3] [,4] 

[1,]   33   35   37   39 

[2,]   34   36   38   40 

 

, , 6 

 

     [,1] [,2] [,3] [,4] 

[1,]   41   43   45   47 

[2,]   42   44   46   48 

 

, , 7 

 

     [,1] [,2] [,3] [,4] 

[1,]   49   51   53   55 

[2,]   50   52   54   56 

 

, , 8 

 

     [,1] [,2] [,3] [,4] 

[1,]   57   59   61   63 

[2,]   58   60   62   64 

 
 
> x[1,,] 

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] 

[1,]    1    9   17   25   33   41   49   57 

[2,]    3   11   19   27   35   43   51   59 

[3,]    5   13   21   29   37   45   53   61 

[4,]    7   15   23   31   39   47   55   63 

 
 
> x[1,2,] 

[1]  3 11 19 27 35 43 51 59 



 
 
> x[1,2,1] 

[1] 3 

 
 
Example 

The following example creates an array of two 3x3 matrices 
each with 3 rows and 3columns. 
 
# Create two vectors of different lengths. 
vector1 <- c(5,9,3) 
vector2 <- c(10,11,12,13,14,15) 
# Take these vectors as input to the array. 
result <- array(c(vector1,vector2),dim=c(3,3,2)) 
print(result) 
 
When we execute the above code, it produces the following 
result: 
, , 1 
[,1] [,2] [,3] 
[1,] 5 10 13 
[2,] 9 11 14 
[3,] 3 12 15 
, , 2 
[,1] [,2] [,3] 
[1,] 5 10 13 
[2,] 9 11 14 
[3,] 3 12 15 
 
Naming Columns and Rows 

We can give names to the rows, columns and matrices in the 
array by using the dimnames parameter. 
 
# Create two vectors of different lengths. 
vector1 <- c(5,9,3) 
vector2 <- c(10,11,12,13,14,15) 
column.names <- c("COL1","COL2","COL3") 
row.names <- c("ROW1","ROW2","ROW3") 
matrix.names <- c("Matrix1","Matrix2") 
# Take these vectors as input to the array. 
result <- array(c(vector1,vector2),dim=c(3,3,2),dimnames = 
list(column.names,row.names,matrix.names)) 
print(result) 
 



When we execute the above code, it produces the following 
result: 
, , Matrix1 
ROW1 ROW2 ROW3 
COL1 5 10 13 
COL2 9 11 14 
COL3 3 12 15 
, , Matrix2 
ROW1 ROW2 ROW3 
COL1 5 10 13 
COL2 9 11 14 
COL3 3 12 15 
 
Accessing Array Elements 
# Create two vectors of different lengths. 
vector1 <- c(5,9,3) 
vector2 <- c(10,11,12,13,14,15) 
column.names <- c("COL1","COL2","COL3") 
row.names <- c("ROW1","ROW2","ROW3") 
 
matrix.names <- c("Matrix1","Matrix2") 
# Take these vectors as input to the array. 
result <- array(c(vector1,vector2),dim=c(3,3,2),dimnames = 
list(column.names,row.names,matrix.names)) 
# Print the third row of the second matrix of the array. 
print(result[3,,2]) 
# Print the element in the 1st row and 3rd column of the 
1st matrix. 
print(result[1,3,1]) 
# Print the 2nd Matrix. 
print(result[,,2]) 
 
When we execute the above code, it produces the following 
result: 
 
ROW1 ROW2 ROW3 
3 12 15 
[1] 13 
ROW1 ROW2 ROW3 
COL1 5 10 13 
COL2 9 11 14 
COL3 3 12 15 
 
Manipulating Array Elements 

As array is made up matrices in multiple dimensions, the 
operations on elements of array are carried out by accessing 
elements of the matrices. 



# Create two vectors of different lengths. 
vector1 <- c(5,9,3) 
vector2 <- c(10,11,12,13,14,15) 
# Take these vectors as input to the array. 
array1 <- array(c(vector1,vector2),dim=c(3,3,2)) 
# Create two vectors of different lengths. 

vector3 <- c(9,1,0) 

vector4 <- c(6,0,11,3,14,1,2,6,9) 
array2 <- array(c(vector1,vector2),dim=c(3,3,2)) 
# create matrices from these arrays. 
matrix1 <- array1[,,2] 
matrix2 <- array2[,,2] 
# Add the matrices. 
result <- matrix1+matrix2 
print(result) 
 
When we execute the above code, it produces the following 
result: 
[,1] [,2] [,3] 
[1,] 10 20 26 
[2,] 18 22 28 
[3,] 6 24 30 
 
Calculations  across Array Elements 

We can do calculations across the elements in an array using 
the apply()function. 
 
Syntax 

apply(x, margin, fun) 
Following is the description of the parameters used: 
x is an array. 

margin is the name of the data set used. 

fun is the function to be applied across the elements of the 

array. 
 
Example 

We use the apply() function below to calculate the sum of the 
elements in the rows of an array across all the matrices. 
 
# Create two vectors of different lengths. 
vector1 <- c(5,9,3) 
vector2 <- c(10,11,12,13,14,15) 
# Take these vectors as input to the array. 

new.array <- array(c(vector1,vector2),dim=c(3,3,2)) 



print(new.array) 
# Use apply to calculate the sum of the rows across all 
the matrices. 
result <- apply(new.array, c(1), sum) 
print(result) 
 
When we execute the above code, it produces the following 
result: 
, , 1 
[,1] [,2] [,3] 
[1,] 5 10 13 
[2,] 9 11 14 
[3,] 3 12 15 
, , 2 
[,1] [,2] [,3] 
[1,] 5 10 13 
[2,] 9 11 14 
[3,] 3 12 15 

[1] 56 68 60 

You can create an array easily with the array() function, where you give the data as 

the first argument and a vector with the sizes of the dimensions as the second 

argument. The number of dimension sizes in that argument gives you the number of 

dimensions. For example, you make an array with four columns, three rows, and two 

“tables” like this: 

> my.array <- array(1:24, dim=c(3,4,2)) 

> my.array 

, , 1 

   [,1] [,2] [,3] [,4] 

[1,]  1  4  7  10 

[2,]  2  5  8  11 

[3,]  3  6  9  12 

, , 2 

   [,1] [,2] [,3] [,4] 

[1,]  13  16  19  22 

[2,]  14  17  20  23 

[3,]  15  18  21  24 



This array has three dimensions. Notice that, although the rows are given as the first 

dimension, the tables are filled column-wise. So, for arrays, R fills the columns, then 

the rows, and then the rest. 

CHANGE THE DIMENSIONS OF A VECTOR IN R 

Alternatively, you could just add the dimensions using the dim() function. This is a 

little hack that goes a bit faster than using the array() function; it’s especially useful if 

you have your data already in a vector. (This little trick also works for creating 

matrices, by the way, because a matrix is nothing more than an array with only two 

dimensions.) 

Say you already have a vector with the numbers 1 through 24, like this: 

> my.vector <- 1:24 

You can easily convert that vector to an array exactly like my.array simply by 

assigning the dimensions, like this: 

> dim(my.vector) <- c(3,4,2) 

If you check how my.vector looks like now, you see there is no difference from the 

array my.array that you created before. 

> identical(my.array, my.vector) 

[1] TRUE 

 

The factorial of a number is the product of all the integers from 1 to that number. 

For example, the factorial of 6 (denoted as 6!) is 1*2*3*4*5*6 = 720. 

Factorial is not defined for negative numbers and the factorial of zero is one, 0! = 1. 

This example finds the factorial of a number normally. However, you can find it using 
recursion as well. 

Example: Find the factorial of a number 
# take input from the user 

num = as.integer(readline(prompt="Enter a number: ")) 

factorial = 1 



 

# check is the number is negative, positive or zero 

if(num < 0) { 

    print("Sorry, factorial does not exist for negative numbers") 

} else if(num == 0) { 

    print("The factorial of 0 is 1") 

} else { 

    for(i in 1:num) { 

        factorial = factorial * i 

    } 

    print(paste("The factorial of", num ,"is",factorial)) 

} 

output 

Enter a number: 8 

[1] "The factorial of 8 is 40320" 

Here, we take input from the user and check if the number is negative, zero or 
positive using if...else statement. 

If the number is positive, we use for loop to calculate the factorial. 

We can also use the built-in function factorial() for this. 

> factorial(8) 

[1] 40320 

R Functions 

Functions are used to logically break our code into simpler parts which become easy 
to maintain and understand. 

It's pretty straightforward to create your own function in R programming. 

 

Syntax for Writing Functions in R 



func_name <- function (argument) { 

   statement 

} 

Here, we can see that the reserved word function is used to declare a function in 

R. 

The statements within the curly braces form the body of the function. These braces 
are optional if the body contains only a single expression. 

Finally, this function object is given a name by assigning it to a variable, func_name. 

 

Example of a Function 
pow <- function(x, y) { 

   # function to print x raised to the power y 

 

   result <- x^y 

   print(paste(x,"raised to the power", y, "is", result)) 

} 

Here, we created a function called pow(). 

It takes two arguments, finds the first argument raised to the power of second 
argument and prints the result in appropriate format. 

We have used a built-in function paste() which is used to concatenate strings. 

 

How to call a function? 

We can call the above function as follows. 

>pow(8, 2) 

[1] "8 raised to the power 2 is 64" 

 

> pow(2, 8) 

[1] "2 raised to the power 8 is 256" 



Here, the arguments used in the function declaration (x and y) are called formal 
arguments and those used while calling the function are called actual 
arguments. 

 

Named Arguments 

In the above function calls, the argument matching of formal argument to the actual 
arguments takes place in positional order. 

This means that, in the call pow(8,2), the formal arguments x and y are assigned 8 
and 2 respectively. 

We can also call the function using named arguments. 

When calling a function in this way, the order of the actual arguments doesn't matter. 
For example, all of the function calls given below are equivalent. 

> pow(8, 2) 

[1] "8 raised to the power 2 is 64" 

 

> pow(x = 8, y = 2) 

[1] "8 raised to the power 2 is 64" 

 

> pow(y = 2, x = 8) 

[1] "8 raised to the power 2 is 64" 

Furthermore, we can use named and unnamed arguments in a single call. 

In such case, all the named arguments are matched first and then the remaining 
unnamed arguments are matched in a positional order. 

> pow(x=8, 2) 

[1] "8 raised to the power 2 is 64" 

 

> pow(2, x=8) 

[1] "8 raised to the power 2 is 64" 

In all the examples above, x gets the value 8 and y gets the value 2. 

 

Default Values for Arguments 



We can assign default values to arguments in a function in R. 

This is done by providing an appropriate value to the formal argument in the function 
declaration. 

Here is the above function with a default value for y. 

pow <- function(x, y = 2) { 

   # function to print x raised to the power y 

   result <- x^y 

   print(paste(x,"raised to the power", y, "is", result)) 

} 

The use of default value to an argument makes it optional when calling the function. 

> pow(3) 

[1] "3 raised to the power 2 is 9" 

 

> pow(3,1) 

[1] "3 raised to the power 1 is 3" 

Here, y is optional and will take the value 2 when not provided. 

R Return Value from Function 
In this ,to return a value from a function in R. You'll also learn to use functions without 

the return function. 

Many a times, we will require our functions to do some processing and return back 
the result. This is accomplished with the return() function in R. 

 

Syntax of return() 

return(expression) 

The value returned from a function can be any valid object. 

 

Example: return() 

https://www.programiz.com/r-programming/function


Let us look at an example which will return whether a given number is positive, 
negative or zero. 

check <- function(x) { 

   if (x > 0) { 

       result <- "Positive" 

   } 

   else if (x < 0) { 

       result <- "Negative" 

   } 

   else { 

       result <- "Zero" 

   } 

   return(result) 

} 

Here, are some sample runs. 

> check(1) 

[1] "Positive" 

 

> check(-10) 

[1] "Negative" 

 

> check(0) 

[1] "Zero" 

 

Functions without return() 

If there are no explicit returns from a function, the value of the last evaluated 
expression is returned automatically in R. 



For example, the following is equivalent to the above function. 

check <- function(x) { 

   if (x > 0) { 

       result <- "Positive" 

   } 

   else if (x < 0) { 

       result <- "Negative" 

   } 

   else { 

       result <- "Zero" 

   } 

   result 

} 

We generally use explicit return() functions to return a value immediately from a 
function. 

If it is not the last statement of the function, it will prematurely end the function 
bringing the control to the place from which it was called. 

check <- function(x) { 

   if (x>0) { 

       return("Positive") 

   } 

   else if (x<0) { 

       return("Negative") 

   } 

   else { 

       return("Zero") 

   } 

} 

In the above example, if x > 0, the function immediately returns "Positive" without 
evaluating rest of the body. 

 

Multiple Returns 



The return() function can return only a single object. If we want to return multiple 
values in R, we can use a list (or other objects) and return it. 

Following is an example. 

multi_return <- function() { 

   my_list <- list("color" = "red", "size" = 20, "shape" = "round") 

   return(my_list)  

} 

Here, we create a list my_list with multiple elements and return this single list. 

> a <- multi_return() 

> a$color 

[1] "red" 

 

> a$size 

[1] 20 

 

> a$shape 

[1] "round" 

Lazy Evaluation of Function 
Arguments to functions are evaluated lazily, which means so they are 
evaluated only when needed by the function body. 
# Create a function with arguments. 

new.function <- function(a, b) { 

print(a^2) 
print(a) 
print(b) 
} 
# Evaluate the function without supplying one of the 
arguments. 
new.function(6) 

https://www.programiz.com/r-programming/list


When we execute the above code, it produces the following 
result: 
[1] 36 
[1] 6 
Error in print(b) : argument "b" is missing, with no 

default 

R Recursive Function 
 

 

 

A function that calls itself is called a recursive function and this technique is known 
as recursion. 

This special programming technique can be used to solve problems by breaking 
them into smaller and simpler sub-problems. 

An example can help clarify this concept: 

Let us take the example of finding the factorial of a number. Factorial of a positive 
integer number is defined as the product of all the integers from 1 to that number. 
For example, the factorial of 5 (denoted as 5!) will be 

5! = 1*2*3*4*5 = 120 

This problem of finding factorial of 5 can be broken down into a sub-problem of 
multiplying the factorial of 4 with 5. 

5! = 5*4! 

Or more generally, 

https://www.programiz.com/r-programming/function


n! = n*(n-1)! 

Now we can continue this until we reach 0! which is 1. 

The implementation of this is provided below. 

 

Example: Recursive Function in R 
# Recursive function to find factorial 

 

recursive.factorial <- function(x) { 

   if (x == 0)    return (1) 

   else           return (x * recursive.factorial(x-1)) 

} 

Here, we have a function which will call itself. Something 
like recursive.factorial(x) will turn into x * 
recursive.factorial(x) until x becomes equal to 0. 

When x becomes 0, we return 1 since the factorial of 0 is 1. This is the terminating 
condition and is very important. 

Without this the recursion will not end and continue indefinitely (in theory). Here are 
some sample function calls to our function. 

> recursive.factorial(0) 

[1] 1 

 

> recursive.factorial(5) 

[1] 120 

 

> recursive.factorial(7) 

[1] 5040 

 

The use of recursion, often, makes code shorter and looks clean. 

However, it is sometimes hard to follow through the code logic. It might be hard to 
think of a problem in a recursive way. 



Recursive functions are also memory intensive, since it can result into a lot of nested 
function calls. This must be kept in mind when using it for solving big problems. 

R Objects and Classes: Introduction and Types 

R has 3 classes. In this you'll be introduced to all three classes (S3, S4 and reference 

class) in R programming. 

We can do object oriented programming in R. In fact, everything in R is an object. 

An object is a data structure having some attributes and methods which act on its 
attributes. 

Class is a blueprint for the object. We can think of class like a sketch (prototype) of a 
house. It contains all the details about the floors, doors, windows etc. Based on 
these descriptions we build the house. 

House is the object. As, many houses can be made from a description, we can 
create many objects from a class. An object is also called an instance of a class and 
the process of creating this object is called instantiation. 

While most programming languages have a single class system, R has three class 
systems. Namely, S3, S4 and more recently Reference class systems. 

They have their own features and peculiarities and choosing one over the other is a 
matter of preference. Below, we give a brief introduction to them. 

S3 Class 

S3 class is somewhat primitive in nature. It lacks a formal definition and object of this 
class can be created simply by adding a class attribute to it. 

This simplicity accounts for the fact that it is widely used in R programming 
language. In fact most of the R built-in classes are of this type. 

Example 1: S3 class 

> # create a list with required components 

> s <- list(name = "John", age = 21, GPA = 3.5) 

 

> # name the class appropriately 

> class(s) <- "student" 

Above example creates a S3 class with the given list. 

 

S4 Class 



S4 class are an improvement over the S3 class. They have a formally defined 
structure which helps in making object of the same class look more or less similar. 

Class components are properly defined using the setClass() function and objects 
are created using the new() function. 

Example 2: S4 class 

< setClass("student", slots=list(name="character", age="numeric", 
GPA="numeric")) 

 

Reference Class 

Reference class were introduced later, compared to the other two. It is more similar 
to the object oriented programming we are used to seeing in other major 
programming languages. 

Reference classes are basically S4 classed with an environment added to it. 

Example 3: Reference class 

< setRefClass("student") 

 

Comparision between S3 vs S4 vs 
Reference Class 

S3 Class S4 Class Referene Class 

Lacks formal definition 
Class defined 

using setClass() 

Class defined 

using setRefClass() 

Objects are created by 

setting the class attribute 

Objects are created 

using new() 

Objects are created using 

generator functions 

Attributes are accessed 

using $ 

Attributes are accessed 

using @ 
Attributes are accessed using $ 

Methods belong to generic 

function 

Methods belong to 

generic function 
Methods belong to the class 



Follows copy-on-modify 

semantics 

Follows copy-on-modify 

semantics 

Does not follow copy-on-modify 

semantics 

R S3 Class 
In this article, you will learn to work with S3 classes (one of the three class 
systems in R). 

 

S3 class is the most popular and prevalent class in R programming language. 

Most of the classes that come predefined in R are of this type. The fact that it is 
simple and easy to implement is the reason behind this. 

 

How to define S3 class and create S3 
objects? 

S3 class has no formal, predefined definition. 

Basically, a list with its class attribute set to some class name, is an S3 object. The 
components of the list become the member variables of the object. 

Following is a simple example of how an S3 object of class student can be created. 

> # create a list with required components 

> s <- list(name = "John", age = 21, GPA = 3.5) 

 

> # name the class appropriately 

> class(s) <- "student" 

 

> # That's it! we now have an object of class "student" 

> s 

$name 

[1] "John" 



 

$age 

[1] 21 

 

$GPA 

[1] 3.5 

 

attr(,"class") 

[1] "student" 

This might look awkward for programmers coming from C++, Python etc. where 
there are formal class definitions and objects have properly defined attributes and 
methods. 

In R S3 system, it's pretty ad hoc. You can convert an object's class according to 
your will with objects of the same class looking completely different. It's all up to you. 

 

How to use constructors to create 
objects? 

It is a good practice to use a function with the same name as class (not a necessity) 
to create objects. 

This will bring some uniformity in the creation of objects and make them look similar. 

We can also add some integrity check on the member attributes. Here is an 
example. Note that in this example we use the attr() function to set the class 
attribute of the object. 

# a constructor function for the "student" class 

 

student <- function(n,a,g) { 

 # we can add our own integrity checks 

 if(g>4 || g<0)  stop("GPA must be between 0 and 4") 

 value <- list(name = n, age = a, GPA = g) 

  

 # class can be set using class() or attr() function 

 attr(value, "class") <- "student" 

 value 

https://www.programiz.com/cpp-programming
https://www.programiz.com/python-programming


} 

Here is a sample run where we create objects using this constructor. 

> s <- student("Paul", 26, 3.7) 

 

> s 

$name 

[1] "Paul" 

 

$age 

[1] 26 

 

$GPA 

[1] 3.7 

 

attr(,"class") 

[1] "student" 

 

> class(s) 

[1] "student" 

 

> s <- student("Paul", 26, 5) 

Error in student("Paul", 26, 5) : GPA must be between 0 and 4 

 

> # these integrity check only work while creating the object using 
constructor 

> s <- student("Paul", 26, 2.5) 

 

> # it's up to us to maintain it or not 

> s$GPA <- 5 

 

Methods and Generic Functions 

In the above example, when we simply write the name of the object, its internals get 
printed. 



In interactive mode, writing the name alone will print it using the print() function. 

> s 

$name 

[1] "Paul" 

 

$age 

[1] 26 

 

$GPA 

[1] 3.7 

 

attr(,"class") 

[1] "student" 

Furthermore, we can use print() with vectors, matrix, data frames, factors etc. and 
they get printed differently according to the class they belong to. 

How does print() know how to print these variety of dissimilar looking object? 

The answer is, print() is a generic function. Actually, it has a collection of a number 
of methods. You can check all these methods with methods(print). 

> methods(print) 

 [1] print.acf*                                    

 [2] print.anova* 

... 

[181] print.xngettext*                              

[182] print.xtabs*                                  

 

  Non-visible functions are asterisked 

We can see methods like print.data.frame and print.factor in the above list. 

When we call print() on a data frame, it is dispatched to print.data.frame(). 

If we had done the same with a factor, the call would dispatch to print.factor(). 
Here, we can observe that the method names are in the 
form generic_name.class_name(). This is how R is able to figure out which method to 
call depending on the class. 

Printing our object of class "student" looks for a method of the form print.student(), 
but there is no method of this form. 

https://www.programiz.com/r-programming/vector
https://www.programiz.com/r-programming/matrix
https://www.programiz.com/r-programming/data-frame
https://www.programiz.com/r-programming/factor


So, which method did our object of class "student" call? 

It called print.default(). This is the fallback method which is called if no other 
match is found. Generic functions have a default method. 

There are plenty of generic functions like print(). You can list them all 
with methods(class="default"). 

> methods(class="default") 

 [1] add1.default*            aggregate.default*       

 [3] AIC.default*             all.equal.default 

... 

 

How to write your own method? 

Now let us implement a method print.student() ourself. 

print.student <- function(obj) { 

 cat(obj$name, "\n") 

 cat(obj$age, "years old\n") 

 cat("GPA:", obj$GPA, "\n") 

} 

Now this method will be called whenever we print() an object of class "student". 

In S3 system, methods do not belong to object or class, they belong to generic 
functions. This will work as long as the class of the object is set. 

> # our above implemented method is called 

> s 

Paul  

26 years old 

GPA: 3.7  

 

> # removing the class attribute will restore as previous 

> unclass(s) 

$name 

[1] "Paul" 

 



$age 

[1] 26 

 

$GPA 

[1] 3.7 

 

Writing Your Own Generic Function 

It is possible to make our own generic function like print() or plot(). Let us first look 
at how these functions are implemented. 

> print 

function (x, ...)  

UseMethod("print") 

<bytecode: 0x0674e230> 

<environment: namespace:base> 

 

> plot 

function (x, y, ...)  

UseMethod("plot") 

<bytecode: 0x04fe6574> 

<environment: namespace:graphics> 

We can see that they have a single call to UseMethod() with the name of the generic 
function passed to it. This is the dispatcher function which will handle all the 
background details. It is this simple to implement a generic function. 

For the sake of example, we make a new generic function called grade. 

grade <- function(obj) { 

 UseMethod("grade") 

} 

A generic function is useless without any method. Let us implement the default 
method. 

grade.default <- function(obj) { 

 cat("This is a generic function\n") 

} 



Now let us make method for our class "student". 

grade.student <- function(obj) { 

 cat("Your grade is", obj$GPA, "\n") 

} 

A sample run. 

> grade(s) 

Your grade is 3.7 

In this way, we implemented a generic function called grade and later a method for 
our class. 

R S4 Class 
In this ,you'll learn everything about S4 classes in R; how to define them, 
create them, access their slots, and use them efficiently in your program. 

 

 

Unlike S3 classes and objects which lacks formal definition, we look at S4 class 
which is stricter in the sense that it has a formal definition and a uniform way to 
create objects. 

This adds safety to our code and prevents us from accidentally making naive 
mistakes. 

 

How to define S4 Class? 

S4 class is defined using the setClass() function. 

In R terminology, member variables are called slots. While defining a class, we need 
to set the name and the slots (along with class of the slot) it is going to have. 

https://www.programiz.com/r-programming/S3-class
https://www.programiz.com/r-programming/object-class-introduction


Example 1: Definition of S4 class 

setClass("student", slots=list(name="character", age="numeric", 
GPA="numeric")) 

In the above example, we defined a new class called student along with three slots 
it's going to have name, age and GPA. 

There are other optional arguments of setClass() which you can explore in the help 
section with ?setClass. 

 

How to create S4 objects? 

S4 objects are created using the new() function. 

Example 2: Creation of S4 object 

> # create an object using new() 

> # provide the class name and value for slots 

> s <- new("student",name="John", age=21, GPA=3.5) 

 

> s 

An object of class "student" 

Slot "name": 

[1] "John" 

 

Slot "age": 

[1] 21 

 

Slot "GPA": 

[1] 3.5 

We can check if an object is an S4 object through the function isS4(). 

> isS4(s) 

[1] TRUE 

The function setClass() returns a generator function. 

This generator function (usually having same name as the class) can be used to 
create new objects. It acts as a constructor. 



> student <- setClass("student", slots=list(name="character", 
age="numeric", GPA="numeric")) 

 

> student 

class generator function for class ‚student‛ from package 
‘.GlobalEnv’ 

function (...)  

new("student", ...) 

Now we can use this constructor function to create new objects. 

Note above that our constructor in turn uses the new() function to create objects. It is 
just a wrap around. 

Example 3: Creation of S4 objects using generator 

function 

> student(name="John", age=21, GPA=3.5) 

An object of class "student" 

Slot "name": 

[1] "John" 

 

Slot "age": 

[1] 21 

 

Slot "GPA": 

[1] 3.5 

 

How to access and modify slot? 

Just as components of a list are accessed using $, slot of an object are accessed 
using @. 

Accessing slot 

> s@name 

[1] "John" 

 

> s@GPA 

[1] 3.5 

https://www.programiz.com/r-programming/list


 

> s@age 

[1] 21 

Modifying slot directly 

A slot can be modified through reassignment. 

> # modify GPA 

> s@GPA <- 3.7 

 

> s 

An object of class "student" 

Slot "name": 

[1] "John" 

 

Slot "age": 

[1] 21 

 

Slot "GPA": 

[1] 3.7 

Modifying slots using slot() function 

Similarly, slots can be access or modified using the slot() function. 

> slot(s,"name") 

[1] "John" 

 

> slot(s,"name") <- "Paul" 

 

> s 

An object of class "student" 

Slot "name": 

[1] "Paul" 

 

Slot "age": 

[1] 21 

 



Slot "GPA": 

[1] 3.7 

Methods and Generic Functions 

As in the case of S3 class, methods for S4 class also belong to generic functions 
rather than the class itself. Working with S4 generics is pretty much similar to S3 
generics. 

You can list all the S4 generic functions and methods available, using the 
function showMethods(). 

Example 4: List all generic functions 

> showMethods() 

Function: - (package base) 

 

Function: != (package base) 

... 

Function: trigamma (package base) 

 

Function: trunc (package base) 

Writing the name of the object in interactive mode prints it. This is done using the S4 
generic function show(). 

You can see this function in the above list. This function is the S4 analogy of the 
S3 print()function. 

Example 5: Check if a function is a generic function 

> isS4(print) 

[1] FALSE 

 

> isS4(show) 

[1] TRUE 

We can list all the methods of show generic function using showMethods(show). 

Example 6: List all methods of a generic function 

> showMethods(show) 

Function: show (package methods) 

object="ANY" 



object="classGeneratorFunction" 

... 

object="standardGeneric" 

(inherited from: object="genericFunction") 

object="traceable" 

 

How to write your own method? 

We can write our own method using setMethod() helper function. 

For example, we can implement our class method for the show() generic as follows. 

setMethod("show", 

         "student", 

         function(object) { 

           cat(object@name, "\n") 

           cat(object@age, "years old\n") 

           cat("GPA:", object@GPA, "\n") 

         } 

) 

Now, if we write out the name of the object in interactive mode as before, the above 
code is executed. 

> s <- new("student",name="John", age=21, GPA=3.5) 

 

> s    # this is same as show(s) 

John  

21 years old 

GPA: 3.5 

In this way we can write our own S4 class methods for generic functions. 

R Reference Class 
In this, you will learn to work with reference class which is one of the three 
class systems (other two are S3 and S4). 



 

Reference class in R programming is similar to the object oriented programming we 
are used to seeing in common languages like C++, Java, Python etc. 

Unlike S3 and S4 classes, methods belong to class rather than generic functions. 
Reference class are internally implemented as S4 classes with an environment 
added to it. 

 

How to defined a reference class? 

Defining reference class is similar to defining a S4 class. Instead of setClass() we 
use the setRefClass() function. 

> setRefClass("student") 

Member variables of a class, if defined, need to be included in the class definition. 
Member variables of reference class are called fields (analogous to slots in S4 
classes). 

Following is an example to define a class called student with 3 
fields, name, age and GPA. 

> setRefClass("student", fields = list(name = "character", age = 
"numeric", GPA = "numeric")) 

 

How to create a reference objects? 

The function setRefClass() returns a generator function which is used to create 
objects of that class. 

> student <- setRefClass("student", 

    fields = list(name = "character", age = "numeric", GPA = 
"numeric")) 

https://www.programiz.com/r-programming/S3-class
https://www.programiz.com/r-programming/S4-class


> # now student() is our generator function which can be used to 
create new objects 

 

> s <- student(name = "John", age = 21, GPA = 3.5) 

 

> s 

Reference class object of class "student" 

Field "name": 

[1] "John" 

Field "age": 

[1] 21 

Field "GPA": 

[1] 3.5 

 

How to access and modify fields? 

Fields of the object can be accessed using the $ operator. 

> s$name 

[1] "John" 

 

> s$age 

[1] 21 

 

> s$GPA 

[1] 3.5 

Similarly, it is modified by reassignment. 

> s$name <- "Paul" 

 

> s 

Reference class object of class "student" 

Field "name": 

[1] "Paul" 

Field "age": 



[1] 21 

Field "GPA": 

[1] 3.5 

Warning Note: 

In R programming, objects are copied when assigned to new variable or passed to a 
function (pass by value). For example. 

> # create list a and assign to b 

> a <- list("x" = 1, "y" = 2) 

> b <- a 

 

> # modify b 

> b$y = 3 

 

> # a remains unaffected 

> a 

$x 

[1] 1 

 

$y 

[1] 2 

 

> # only b is modified 

> b 

$x 

[1] 1 

 

$y 

[1] 3 

But this is not the case with reference objects. Only a single copy exist and all 
variables reference to the same copy. Hence the name, reference. 

> # create reference object a and assign to b 

> a <- student(name = "John", age = 21, GPA = 3.5) 

> b <- a 

 



> # modify b 

> b$name <- "Paul" 

 

> # a and b both are modified 

> a 

Reference class object of class "student" 

Field "name": 

[1] "Paul" 

Field "age": 

[1] 21 

Field "GPA": 

[1] 3.5 

 

> b 

Reference class object of class "student" 

Field "name": 

[1] "Paul" 

Field "age": 

[1] 21 

Field "GPA": 

[1] 3.5 

This can cause some unwanted change in values and be the source of strange bugs. 
We need to keep this in mind while working with reference objects. To make a copy, 
we can use the copy() method made availabe to us. 

> # create reference object a and assign a’s copy to b 

> a <- student(name = "John", age = 21, GPA = 3.5) 

> b <- a$copy() 

 

> # modify b 

> b$name <- "Paul" 

 

> # a remains unaffected 

> a 

Reference class object of class "student" 

Field "name": 



[1] "John" 

Field "age": 

[1] 21 

Field "GPA": 

[1] 3.5 

 

> # only b is modified 

> b 

Reference class object of class "student" 

Field "name": 

[1] "Paul" 

Field "age": 

[1] 21 

Field "GPA": 

[1] 3.5 

 

Reference Methods 

Methods are defined for a reference class and do not belong to generic functions as 
in S3 and S4 classes. 

All reference class have some methods predefined because they all are inherited 
from the superclass envRefClass. 

> student 

Generator for class "student": 

 

Class fields: 

                                     

Name:       name       age       GPA 

Class: character   numeric   numeric 

 

 Class Methods:   

    "callSuper", "copy", "export", "field", "getClass", 
"getRefClass",  

"import", "initFields", "show", "trace", "untrace", "usingMethods" 

 



 

 Reference Superclasses:   

    "envRefClass" 

We can see class methods like copy(), field() and show() in the above list. We can 
create our own methods for the class. 

This can be done during the class definition by passing a list of function definitions 
to methods argument of setRefClass(). 

student <- setRefClass("student", 

  fields = list(name = "character", age = "numeric", GPA = 
"numeric"), 

  methods = list( 

    inc_age = function(x) { 

      age <<- age + x 

    }, 

    dec_age = function(x) { 

      age <<- age - x 

    } 

  ) 

) 

In the above section of our code, we defined two methods 
called inc_age() and dec_age(). These two method modify the field age. 

Note that we have to use the non-local assignment operator <<- since age isn't in the 
method's local environment. This is important. 

Using the simple assignment operator <- would have created a local variable 
called age, which is not what we want. R will issue a warning in such case. 

Here is a sample run where we use the above defined methods. 

> s <- student(name = "John", age = 21, GPA = 3.5) 

 

> s$inc_age(5) 

> s$age 

[1] 26 

 

> s$dec_age(10) 

> s$age 



[1] 16 

R Inheritance 
In this, you'll learn everything about inheritance in R. More specifically, how to 
create inheritance in S3, S4 and Reference classes, and use them efficiently in 
your program. 

 

One the most useful feature of an object oriented programming language is 
inheritance. 

Defining new classes out of existing ones. This is to say, we can derive new classes 
from existing base classes and adding new features. We don't have to write from 
scratch. Hence, inheritance provides reusability of code. 

Inheritance forms a hierarchy of class just like a family tree. Important thing to note is 
that the attributes define for a base class will automatically be present in the derived 
class. 

Moreover, the methods for the base class will work for the derived. 

 

Below, we discuss how inheritance is carried out for the three different class systems 
in R programming language. 

 

Inheritance in S3 Class 

https://www.programiz.com/r-programming/object-class-introduction


S3 classes do not have any fixed definition. Hence attributes of S3 objects can be 
arbitrary. 

Derived class, however, inherit the methods defined for base class. Let us suppose 
we have a function that creates new objects of class student as follows. 

student <- function(n,a,g) { 

  value <- list(name=n, age=a, GPA=g) 

  attr(value, "class") <- "student" 

  value 

} 

Furthermore, we have a method defined for generic function print() as follows. 

print.student <- function(obj) { 

  cat(obj$name, "\n") 

  cat(obj$age, "years old\n") 

  cat("GPA:", obj$GPA, "\n") 

} 

Now we want to create an object of class InternationalStudent which inherits 
from student. 

This is be done by assigning a character vector of class names like class(obj) <- 
c(child, parent). 

> # create a list 

> s <- list(name="John", age=21, GPA=3.5, country="France") 

 

> # make it of the class InternationalStudent which is derived from 
the class student 

> class(s) <- c("InternationalStudent","student") 

 

> # print it out 

> s 

John  

21 years old 

GPA: 3.5 

We can see above that, since we haven't defined any method of the 
form print.InternationalStudent(), the method print.student() got called. This 
method of class student was inherited. 

https://www.programiz.com/r-programming/S3-class
https://www.programiz.com/r-programming/vector


Now let us define print.InternationalStudent(). 

print.InternationalStudent <- function(obj) { 

  cat(obj$name, "is from", obj$country, "\n") 

} 

This will overwrite the method defined for class student as shown below. 

> s 

John is from France 

We can check for inheritance with functions like inherits() or is(). 

> inherits(s,"student") 

[1] TRUE 

 

> is(s,"student") 

[1] TRUE 

 

Inheritance in S4 Class 

Since S4 classes have proper definition, derived classes will inherit both attributes 
and methods of the parent class. 

Let us define a class student with a method for the generic function show(). 

# define a class called student 

setClass("student", 

  slots=list(name="character", age="numeric", GPA="numeric") 

) 

 

# define class method for the show() generic function 

setMethod("show", 

  "student", 

  function(object) { 

    cat(object@name, "\n") 

    cat(object@age, "years old\n") 

    cat("GPA:", object@GPA, "\n") 

https://www.programiz.com/r-programming/S4-class


  } 

) 

Inheritance is done during the derived class definition with the argument contains as 
shown below. 

# inherit from student 

setClass("InternationalStudent", 

  slots=list(country="character"), 

  contains="student" 

) 

Here we have added an attribute country, rest will be inherited from the parent. 

> s <- new("InternationalStudent",name="John", age=21, GPA=3.5, 
country="France") 

 

> show(s) 

John  

21 years old 

GPA: 3.5 

We see that method define for class student got called when we did show(s). 

We can define methods for the derived class which will overwrite methods of the 
base class, like in the case of S3 systems. 

 

Inheritance in Reference Class 

Inheritance in reference class is very much similar to that of the S4 class. We define 
in the contains argument, from which base class to derive from. 

Here is an example of student reference class with two 
methods inc_age() and dec_age(). 

student <- setRefClass("student", 

  fields=list(name="character", age="numeric", GPA="numeric"), 

  methods=list( 

    inc_age = function(x) { 

      age <<- age + x 

https://www.programiz.com/r-programming/reference-class


    }, 

    dec_age = function(x) { 

      age <<- age - x 

    } 

  ) 

) 

Now we will inherit from this class. We also overwrite dec_age() method to add an 
integrity check to make sure age is never negative. 

InternationalStudent <- setRefClass("InternationalStudent", 

  fields=list(country="character"), 

  contains="student", 

  methods=list( 

    dec_age = function(x) { 

      if((age - x)<0)  stop("Age cannot be negative") 

      age <<- age - x 

    } 

  ) 

) 

Let us put it to test. 

> s <- InternationalStudent(name="John", age=21, GPA=3.5, 
country="France") 

 

> s$dec_age(5) 

> s$age 

[1] 16 

 

> s$dec_age(20) 

Error in s$dec_age(20) : Age cannot be negative 

> s$age 

[1] 16 

In this way, we are able to inherit from the parent class. 

 

 


