
UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 1

6.1 Introduction to Ruby
Ruby is "A Programmer's Best Friend".

Ruby is a pure object-oriented programming language. It was created in 1993 by Yukihiro Matsumoto
of Japan. Matsumoto is also known as ―Matz‖ in the Ruby community.

Features of ruby:

 Ruby is an open-source and is freely available on the Web, but it is subject to a license.
 Ruby is a general-purpose, interpreted programming language.
 Ruby is a true object-oriented programming language.
 Ruby is a server-side scripting language similar to Python and PERL.
 Ruby can be used to write Common Gateway Interface (CGI) scripts.
 Ruby can be embedded into Hypertext Markup Language (HTML).
 Ruby has a clean and easy syntax that allows a new developer to learn very quickly and easily.
 Ruby has similar syntax to that of many programming languages such as C++ and Perl.
 Ruby is very much scalable and big programs written in Ruby are easily maintainable.
 Ruby can be used for developing Internet and intranet applications.
 Ruby can be installed in Windows and POSIX environments.
 Ruby support many GUI tools such as Tcl/Tk, GTK, and OpenGL.
 Ruby can easily be connected to DB2, MySQL, Oracle, and Sybase.
 Ruby has a rich set of built-in functions, which can be used directly into Ruby scripts.

6.2 Scalar Types and Their Operations
Ruby has three categories of data types:

1. Scalars
2. Arrays, and
3. Hashes.

The most commonly used types: scalars. There are two categories of scalar types: numeric‘s and character

strings.

6.2.1 Numeric and String Literals

All numeric data types in Ruby are descendants of the Numeric class. The immediate child classes of
Numeric are Float and Integer. The Integer class has two child classes: Fixnum and Bignum. An integer literal
that fits into the range of a machine word, which is often 32 bits, is a Fixnum object. An integer literal that is
outside the Fixnum range is a Bignum object. There is no length limitation on integer literals. If a Fixnum
integer grows beyond the size limitation of Fixnum objects, it is coerced to a Bignum object. Likewise, if an
operation on a Bignum object results in a value that fits into a Fixnum object, it is coerced to a Fixnum type.

Underscore characters can appear embedded in integer literals. Ruby ignores such underscores,
allowing large numbers to be slightly more readable. For example, instead of 124761325, 124_761_325 can be
used.

A numeric literal that has either an embedded decimal point or a following exponent is a Float object,
which is stored as the underlying machine‘s double-precision floating-point type. The decimal point must be
embedded; that is, it must be both preceded and followed by at least one digit. So, .435 is not a legal literal in
Ruby.

All string literals are String objects, which are sequences of bytes that represent characters. There are two
categories of string literals:

 single quoted
 double quoted.

Single-quoted string literals cannot include characters specified with escape sequences, such as newline

characters specified with \n. If an actual single-quote character is needed in a string literal that is delimited by
single quotes, the embedded single quote is preceded by a backslash, as in the following example:

‗I\‘ll meet you at O\‘Malleys‘
If an escape sequence is embedded in a single-quoted string literal, each character in the sequence is taken
literally as itself. For example, the sequence \n in the following string literal will be treated as two characters—a
backslash and an n:

„Some apples are red, \n some are green‟

Double-quoted string literals differ from single-quoted string literals in two ways: First, they can include special
characters specified with escape sequences; second, the values of variable names can be interpolated into the
string, which means that their values are substituted for their names.

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 2

In many situations, special characters that are specified with escape sequences must be included in string
literals. For example, if the words on a line must be spaced by tabs, a double-quoted literal with embedded
escape sequences for the tab character can be used as in the following string:

“Runs \t Hits \t Errors”

A double quote can be embedded in a double-quoted string literal by preceding it with a backslash. The null
string (the string with no characters) can be denoted with either ― or ―‖.

Variables and Assignment Statements

 The form of variable names is a lowercase letter or an underscore, followed by any number of
uppercase or lowercase letters, digits, or underscores.

 The letters in a variable name are case sensitive, meaning that fRIZZY, frizzy, frIzZy, and friZZy are
all distinct names.

 Programmer-defined variable names do not include uppercase letters.
 double-quoted string literals can include the values of variables specified by placing the code in braces

and preceding the left brace with a pound sign (#).

For example, if the value of tue_high is 83, then the string “Tuesday‟s high temperature was #{tue_high}”
has the following value:

“Tuesday‟s high temperature was 83”

A scalar variable that has not been assigned a value by the program has the value nil.

6.2.2 Ruby Constants

Ruby has constants, which are distinguished from variables by their names, which always begin with
uppercase letters. A constant is created when it is assigned a value, which can be any constant expression. In
Ruby, a constant can be assigned a new value, although it causes a warning message to the user. Ruby includes
some predefined, or implicit, variables. The name of an implicit scalar variable begins with a dollar sign. The
rest of the name is often just one more special character, such as an underscore (_), a circumflex (^), or a
backslash (\).
Example:

VAR1=100
 VAR2=200

Ruby Pseudo-Variables
They are special variables that have the appearance of local variables but behave like constants. You cannot
assign any value to these variables.

 self: The receiver object of the current method.
 true: Value representing true.
 false: Value representing false.
 nil: Value representing undefined.
 __FILE__: The name of the current source file.
 __LINE__: The current line number in the source file.

6.2.3 Numeric Operators

Most of Ruby‘s numeric operators are similar to those in other common programming languages, so
they should be familiar to most readers. There are the binary operators: + for addition, - for subtraction, * for
multiplication, / for division, ** for exponentiation, and % for modulus. The modulus operator is defined as
follows: x % y produces the remainder of the value of x after division by y. If an integer is divided by an integer,
integer division is done. Therefore, 3 / 2 produces 1.

The operators listed first have the highest precedence.

 Ruby does not include the increment (++) and decrement (--) operators.

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 3

Ruby includes the Math module, which has methods for basic trigonometric and transcendental functions.
Among these methods are cos (cosine), sin (sine), log (logarithm), sqrt (square root), and tan (tangent). The
methods of the Math module are referenced by prefixing their names with Math., as in Math.sin(x). All of these
take any numeric type as a parameter and return a Float value.

Included with the Ruby implementation is an interactive interpreter, which is very useful to the student of Ruby.
It allows one to type any Ruby expression and get an immediate response from the interpreter. The interactive
interpreter‘s name is Interactive Ruby, whose acronym, IRB, is the name of the program that supports it. For
example, if the command prompt is a percent sign (%), one can type % irb

after which irb will respond with its own prompt, which is

irb(main):001:0>

At this prompt, any Ruby expression or statement can be typed, whereupon irb interprets the expression or
statement and returns the value after an implication symbol (=>), as in the following example:

irb(main):001:0> 17 * 3

=> 51

irb(main):002:0>

The lengthy default prompt can be easily changed. We prefer the simple ―>>― prompt. The default prompt can
be changed to this with the following command:

irb(main):002:0> conf.prompt_i = “>>“

From here on, we will use this simple prompt.

6.2.4 String Methods
The Ruby String class has more than 75 methods. Many of these methods can be used as if they were operators.
In fact, we sometimes call them operators, even though underneath they are all methods.

The String method for catenation is specified by plus (+), which can be used as a binary operator. This method
creates a new string from its operands:

The << method appends a string to the right end of another string, which, of course, makes sense only if the left
operand is a variable. Like +, the << method can be used as a binary operator. For example, in the interactions

The other most commonly used methods of Ruby are similar to those of other programming languages. Among
these are the ones shown in Table below; all of them create new strings. As

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 4

As stated previously, all of these methods produce new strings, rather than modify the given string in place.
However, all of the methods also have versions that modify their objects in place. These methods are called
bang or mutator methods and are specified by following their names with an exclamation point (!). To illustrate
the difference between a string method and its bang counterpart, consider the following interactions:

Ruby strings can be indexed, somewhat as if they were arrays. To get the character

:
Note: If a negative subscript is used as an index, the position is counted from the right.

A multi-character substring of a string can be accessed by including two numbers in the brackets, in which case
the first is the position of the first character of the substring and the second is the number of characters in the
substring:

The usual way to compare strings for equality is to use the == method as an operator:

To facilitate ordering, Ruby includes the ―spaceship‖ operator, <=>, which returns -1 if the second operand is
greater than the first, 0 if the two operands are equal, and 1 if the first operand is greater than the second.

Greater‖ in this case means that the text in question belongs later alphabetically. The following interactions
illustrate all three cases:

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 5

The repetition operator is specified with an asterisk (*). It takes a string as its left operand and an expression that
evaluates to a number as its right operand. The left operand is replicated the number of times equal to the value
of the right operand:

6.3 Simple Input and Output

Screen Output (puts)
Output is directed to the screen with the puts method (or operator). The operand for puts is a string. A newline
character is implicitly appended to the string. If the value of a variable is to be part of a line of output, the #{...}
notation can be used to insert it into a double-quoted string, as in the following interactions:

The value returned by puts is nil, and that is the value returned after the string has been displayed. Use print
method if you do not want to append a newline at the end of your string.

Keyboard Input (gets)
The gets method gets a line of input from the keyboard. The retrieved line includes the newline character. If the
newline is not needed, it can be discarded with chomp:

This code could be done by applying chomp directly to the value returned by gets:

If a number is to be input from the keyboard, the string from gets must be converted to an integer with the to_i
method, as in the following interactions:

If the number is a floating-point value, the conversion method is to_f:

In this same way, to_s which converts the value of the object to a string.

The following program created with a text editor and stored in a file with .rb extension:

quadeqn.rb - A simple Ruby program
Get input
print "Enter the value of a:"
a = gets.to_i
print "Enter the value of b:"
b = gets.to_i
print "Enter the value of c:"
c = gets.to_i
print "Enter the value of x:"
x = gets.to_i
res = a * x ** 2 + b * x + c
puts "The value of the expression is: #{res}

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 6

A program stored in a file can be run by the command

>ruby –w filename

So, our example program can be run (interpreted) with

If the program is found to be syntactically correct, the response to the following command is:

6.4 Arrays
Ruby includes two structured classes or types: arrays and hashes.
Arrays in Ruby are more flexible than those of most of the other common languages. This flexibility is a result
of two fundamental differences between Ruby arrays and those of other common languages such as C, C++, and
Java. First, the length of a Ruby array is dynamic: It can grow or shrink anytime during program execution.
Second, a Ruby array can store different types of data. For example, an array may have some numeric elements,
some string elements, and even some array elements.

Ruby arrays can be created in two different ways. First, an array can be created by sending the new
message to the predefined Array class, including a parameter for the size of the array. The second way is simply
to assign a list literal to a variable, where a list, literal is a list of literals delimited by brackets. For example, in
the following interactions, the first array is created with new and the second is created by assignment:\

An array created with the new method can also be initialized by including a second parameter, but every
element is given the same value. Thus, we may have the following interactions:

All Ruby array elements use integers as subscripts, and the lower bound subscript of every array is zero. Array
elements are referenced through subscripts delimited by brackets ([]).

The length of an array can be retrieved with the length method, as illustrated in the following interactions:

Built-In Methods for Arrays and Lists
Ruby has four methods for adding elements at the beginning or at end of the array:
1. unshift(): The unshift method takes a scalar or an array literal as a parameter and appends it to the beginning
2. shift(): Removes and returns the first element of the array
3. push(): The push method takes a scalar or an array literal and adds it to the end of the array:
4. pop(): Removes and returns the last element of the array

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 7

5. max and min: return the smallest or largest element in an array respectively

6. uniq: returns an array with no duplicate elements

7. compact – return an array with no nil elements

8. Set operations: There are three methods that perform set operations on two arrays: & for set intersection;
- for set difference, and | for set union.

6.5 Hashes

Associative arrays are arrays in which each data element is paired with a key, which is used to identify
the data element; associative arrays often are called hashes. There are two fundamental differences between
arrays and hashes: First, arrays use numeric subscripts to address specific elements, whereas hashes use string
values (the keys) to address elements; second, the elements in arrays are ordered by subscript, but the elements
in hashes are not.

Like arrays, hashes can be created in two ways, with the new method or by assigning a value to a
variable. In the latter case, the value is a hash value, in which each element is specified by a key– value pair,
separated by the symbol =>. Hash literals are delimited by braces, as in the following manner:

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 8

If the new method is sent to the Hash class without a parameter, it creates an empty hash, denoted by {}:

An individual element of a hash can be referenced by ―subscripting‖ the hash name with a key.

A new value is added to a hash by assigning the value of the new element to a reference to the key of the new
element, as in the following example:

An element is removed from a hash with the delete method, which takes an element key as a parameter:

The keys and values of a hash can be extracted into arrays with the methods keys and values, respectively:

The has_key? predicate method is used to determine whether an element with a specific key is in a hash.

A hash can be set to empty in one of two ways: either an empty hash value can be assigned to the hash, or the
clear method can be used on the hash. These two approaches are illustrated with the following statements:

6.6 Control Statements

6.6.1 Selection Statements
Ruby offers conditional structures that are pretty common to modern languages. Here, we will explain all the
conditional statements and modifiers available in Ruby.

Ruby‘s if statement is similar to that of other languages. One syntactic difference is that there are no
parentheses around the control expression, as is the case with most of the languages based directly or even
loosely on C. The following construct is illustrative:

if...else Statement
Syntax

if conditional [then]
code...

[else
code...]

end
Executes code if the conditional is true otherwise code specified in the else clause is executed.

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 9

Example:
 a = 4
 if a > 2
 b = a * 2
 else

 b = a / 2
end

it prints : 8

if...elsif..else Statement
Syntax

if conditional [then]
code...

[elsif conditional [then]
code...]...

[else
code...]

end

Example:

snowrate=2
if snowrate <= 1

puts “Light snow”
elsif snowrate <= 2

puts “Moderate snow”
else

puts “Heavy snow”
end

prints ―Moderate snow‖

unless Statement
Ruby has an unless statement, which is the same as its if statement, except that the inverse of the value of the
control expression is used. The following construct illustrates an unless statement:
Syntax

unless conditional [then]
code

[else
code]

end
Executes code if conditional is false. If the conditional is true, code specified in the else clause is executed.
Example:
 a = 5
 unless a > 10
 puts ―A is lesser then 10‖
 else
 puts ―A is greater than 10‖

prints: A is lesser then 10

case statement
Ruby includes two kinds of multiple selection constructs, both named case. One Ruby case construct, which is
similar to a switch, has the following form:

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 10

The value of the case expression is compared with the values of the when clauses, one at a time, from top to
bottom, until a match is found, at which time the sequence of statements that follow is interpreted. The
comparison is done with the === relational operator, which is defined for all built-in classes. Consider the
following example:

print "Enter the value of in_val:"
in_val = gets.to_i
case in_val
when -1 then
 neg_count += 1
when 0 then
 zero_count += 1
when 1 then
 pos_count += 1
else
 print "Error - in_val is out of range"
end

Note that no break statements are needed at the ends of the sequences of selectable statements in this construct.

Second form is:

6.6.2 Looping Statements
Loops in Ruby are used to execute the same block of code a specified number of times.

The while Statement:
Executes code while condition is true. A while loop's condition is separated from code by the reserved word do.
Syntax:

while condition [do]
code

end
Example

i = 1
while i < 5 do

puts "Inside the loop i = #{$i}"
i = i + 1

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 11

end
This will produce the following result:

Inside the loop i = 1
Inside the loop i = 2
Inside the loop i = 3
Inside the loop i = 4

while modifier
Syntax

begin
code

end while condition
Executes code while condition is true. Irrespective of the condition, code is executed once before condition is
evaluated.
Example

i = 1
begin

puts "Inside the loop i = #{$i}"
i= i + 1

end while i < 5
This will produce the following result:

Inside the loop i = 1
Inside the loop i = 2
Inside the loop i = 3
Inside the loop i = 4

Until Statement
Syntax:

until condition [do]
code

end
Executes code while condition is false. An until statement's condition is separated from code by the reserved
word do.
Example

i = 1
until i > 5 do

puts "Inside the loop i = #{i}"
i = i+1

end
This will produce the following result:

Inside the loop i = 1
Inside the loop i = 2
Inside the loop i = 3
Inside the loop i = 4
Inside the loop i = 5

until modifier
Syntax:

begin
code

end until condition
Executes code while condition is false. If an until modifier follows a begin statement with no clauses, code is
executed once before conditional is evaluated.
Example

i = 0
begin

puts "Inside the loop i = #{i}"
i = i+1

end until i > 5
This will produce the following result:

Inside the loop i = 1
Inside the loop i = 2
Inside the loop i = 3
Inside the loop i = 4

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 12

Inside the loop i = 5

For Statement
Syntax

for variable [, variable ...] in expression [do]
code

end
Executes code once for each element in expression.
Example

for i in 1..5
puts "Value of local variable is #{i}"

end
Here, we have defined the range 1..5. The statement for i in 0..5 will allow i to take values in the range from 1 to
5 (including 5). This will produce the following result:

Value of local variable is 1
Value of local variable is 2
Value of local variable is 3
Value of local variable is 4
Value of local variable is 5

A for...in loop is almost exactly equivalent to the following:

(expression).each do |variable[, variable...]|
code

end
Example

 (1..5).each do |i|
puts "Value of local variable is #{i}"

end
This will produce the following result:
Value of local variable is 1
Value of local variable is 2
Value of local variable is 3
Value of local variable is 4
Value of local variable is 5

Break Statement
Syntax

break
Terminates the loop. Terminates a method with an associated block if called within the block

Example

for i in 1..5
if i > 2 then

break
end
puts "Value of local variable is #{i}"

end
This will produce the following result:

Value of local variable is 1
Value of local variable is 2

next Statement
Syntax

next
breaks the current iteration and place the loop in next iteration. Terminates execution of a block if called within
a block
Example:

for i in 1..5
if i > 2 then

next
end
puts "Value of local variable is #{i}"

end

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 13

This will produce the following result:
Value of local variable is 1
Value of local variable is 2

6.7 Blocks
A block is a sequence of code, delimited by either braces or the do and end reserved words. Blocks can

be used with specially written methods to create many useful constructs, including simple iterators for arrays
and hashes. This construct consists of a method call followed by a block. It‘s passed as an ―invisible‖ parameter,

and executed with the yield statement

Usage of yield with blocks:

def disp
 puts "---------- three_times―
 yield
 yield
 yield

end
disp { puts "3-CSE" }

Output:
--------- three_times
3-CSE
3-CSE
3-CSE

6.8 Iterators

Iterators are nothing but methods supported by collections. Objects that store a group of data members
are called collections. In Ruby, arrays and hashes can be termed collections. Iterators return all the elements of
a collection, one after the other. The syntax is

 object.iterator { | value | statement }
 or
 object.iterator do |value|
 statements
 end
The object is typically an array, a range, or a hash

The times iterator
The times iterator method provides a way to build simple counting loops. Typically, times is added to a number
object, which repeats the attached block that number of times. Consider the following example:

The each iterator
The most common iterator is each, which is often used to go through arrays and apply a block to each element.

The upto iterator
Iterates through successive values, starting at start and ending at last inclusive, passing each value in turn to the
block.

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 14

The downto iterator
This decrements a number. It reduces the number by 1 after each pass through the iterator body. If the argument
is not lower, the iterator body is not executed.

The step iterator
The step iterator method takes a terminal value and a step size as parameters and generates the values from that
of the object to which it is sent and the terminal value:

The each_char iterator
 get each character (as an integer) from a string

The collect iterator

the collect iterator method takes the elements from an array, one at a time, and puts the values
generated by the given block into a new array:

The each_key iterator
Operates on hashes and returns all the keys of hash

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 15

The each_value iterator
Operates on hashes and returns all the values of hash

The each_pair iterator
Operates on hashes and returns both keys and values of hash

6.9 Methods
A method definition includes the method‘s header and a sequence of statements, ending with the end reserved
word that describes its actions. A method header is the reserved word def, the method‘s name, and optionally a

parenthesized list of formal parameters.
 Method names must begin with lowercase letters.
 If the method has no parameters, the parentheses are omitted. In fact, the parentheses are optional in all

cases, but it is common practice to include them when there are parameters and omit them when there
are no parameters.

 The types of the parameters are not specified in the parameter list, because Ruby variables do not have
types

 The type of the return object is also not specified in a method definition.
Syntax:
 def method_name ()
 statements
 [return value]
 end
Example:
 def add (a , b)
 c = a + b
 puts ―Sum=#{c}‖
 end
 add(2,5)
will print 7

undef will remove the method

>> undef add
nil

6.10 Classes
A class is defined as a template for objects, of which any number can be created. An object has a state, which is
maintained in its collection of instance variables, and a behavior, which is defined by its methods. An object can
also have constants and a constructor.

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 16

The Basics of Classes
The methods and variables of a class are defined in the syntactic container that has the following form:

class class_name
...
end

 Class names, like constant names, must begin with uppercase letters.
 Instance variables are used to store the state of an object. They are defined in the class definition, and

every object of the class gets its own copy of the instance variables.
 The name of an instance variable must begin with an at sign (@), which distinguishes instance

variables from other variables.
 A class can have a single constructor, which in Ruby is a method with the name initialize, which is

used to initialize instance variables to values.
 A constructor can take any number of parameters, which are treated as local variables; therefore, their

names begin with lowercase letters or underscores.
 Classes in Ruby are dynamic in the sense that members can be added at any time
 Methods can also be removed from a class, by providing another class definition in which the method

to be removed is sent to the method remove_method as a parameter.
Following is an example of a class, named Stack2, that defines a stack like data structure implemented in an
array.
Stack_2.rb - A Class implements stack like structure in an array
class Stack_2
 def initialize(len = 5) ## Constructor
 @stack = Array.new(len)
 @max_len = len
 @top = -1
 end
 def push(num) ##push method
 if @top == @max_len
 puts "Stack is full"
 else
 @top += 1
 @stack[@top] = num
 end
 end
 def pop() ##pop method
 if @top == -1
 puts "Stack is empty"
 else
 @top -= 1
 end
 end

def disp() ## printing method
 for i in 0..@top
 print "#{@stack[i]} "
 end
 puts
 end
end
my_stack = Stack_2.new(2)
my_stack.pop()
my_stack.push(10)
my_stack.push(20)
my_stack.push(30)
my_stack.disp()
my_stack.push(40)
my_stack.pop()
my_stack.pop()
my_stack.disp()

Output:

UNIT-VI RUBY

Ch. Vijayananda Ratnam@Dept of CSE 17

6.10.1 Access Control
The Ruby supports three levels of access control for methods are defined as follows:

 “Public access” means that the method can be called by any code.
 “Protected access” means that only objects of the defining class and its subclasses may call the

method.
 “Private access” means that the method can only be used by object that defines itself. So, no code can

ever call the private methods of another object.
All instance variables has private access by default, and you can not change its access control.

6.10.2 Inheritance

One of the most important concepts in object-oriented programming is that of inheritance. Inheritance
allows us to define a class in terms of another class, which makes it easier to create and maintain an application.

Inheritance also provides an opportunity to reuse the code functionality and fast implementation time

but unfortunately Ruby does not support multiple levels of inheritances but Ruby supports mixins. A mixin is
like a specialized implementation of multiple inheritance in which only the interface portion is inherited.

When creating a class, instead of writing completely new data members and member functions, the

programmer can designate that the new class should inherit the members of an existing class. This existing class
is called the base class or superclass, and the new class is referred to as the derived class or sub-class.

Ruby also supports the concept of subclassing, i.e., inheritance and following example explains the

concept. The syntax for extending a class is simple. Just add a < character and the name of the superclass to your
class statement. For example, following define a class BigBox as a subclass of Box:

class Box # definition of Base class
 def initialize(w,h) ## constructor method

@width, @height = w, h
end
def getArea ## instance method

@width * @height
end

end
class BigBox < Box ## definition of subclass

def printArea ## add a new instance method
@area = @width * @height
puts "Big box area is : #@area"

end
end

box = BigBox.new(10, 20) ## create an object
box.printArea() # print the area

When the above code is executed, it produces the following result:

Big box area is : 200

