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UNIT III – DISCRETE FOURIER SERIES & FOURIER TRANSFORMS  

 

Syllabus  

 

Properties of discrete Fourier series, DFS representation of periodic sequences, Discrete Fourier transforms: 

Properties of DFT, linear convolution of sequences using DFT, Computation of DFT, Fast Fourier transforms 

(FFT) - Radix-2 decimation in time and decimation in frequency FFT Algorithms, Inverse FFT. 

 

Discrete – Fourier Series 

Fourier Series is a mathematical tool that allows the representation of any periodic signal as the sum of 

harmonically related complex exponential signals. The Fourier Series representation of a discrete time 

periodic signal involves a finite number of terms.  

DFS representation of periodic sequences 

A discrete time sequence x[n] is periodic if  

𝑥[𝑛] = 𝑥[𝑛 + 𝑚𝑁]  ∀ 𝑚 

The smallest value of N for which this holds is called the fundamental period. The fundamental frequency is 

𝜔0 =
2𝜋

𝑁
 𝑟𝑎𝑑/𝑠𝑎𝑚𝑝𝑙𝑒.  

A periodic sequence x[n] can be represented by a Discrete Fourier Series made up of complex exponential 

signals of fundamental frequency 𝜔0 =
2𝜋

𝑁
 and its harmonics. 

Similar to continuous Fourier Series, the discrete time exponential Fourier Series consists of exponentials 

𝑒𝑗0𝑛, 𝑒±𝑗𝜔0𝑛, 𝑒±𝑗2𝜔0𝑛,⋯⋯ , 𝑒±𝑗𝑘𝜔0𝑛, ⋯⋯⋯  

The discrete time complex exponentials whose frequencies are separated by 2π are identical. 

𝜑𝑘(𝑛) = 𝑒
𝑗
2𝜋
𝑁
𝑘𝑛 = 𝑒𝑗

2𝜋
𝑁
𝑘𝑛𝑒𝑗2𝜋𝑛 = 𝑒𝑗

2𝜋
𝑁
(𝑘+𝑁)𝑛 = 𝜑𝑘+𝑁(𝑛) 

i.e., in general, the first harmonic is identical to the (N+1)st harmonic, the second harmonic to (N+2)nd 

harmonic, and so on. 

This implies that there are only N independent or unique harmonics whose frequencies range over 2π. So, the 

Discrete Fourier Series can be expressed as 

𝑥[𝑛] = ∑ 𝑋𝑘𝑒
𝑗𝑘𝜔0𝑛

𝑁−1

𝑘=0

  , 𝜔0 =
2𝜋

𝑁
 

Where, the Discrete Fourier Series Coefficients Xk are given by 

𝑋𝑘 =
1

𝑁
∑ 𝑥[𝑛]𝑒−𝑗𝑘𝜔0𝑛
𝑁−1

𝑛=0
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Since Xk are complex, they can be expressed as  

𝑋𝑘 = |𝑋𝑘|𝑒
𝑗∠𝑋𝑘 

The plot of |𝑋𝑘| versus ω is called the magnitude spectrum, and the plot of ∠𝑋𝑘 versus ω is called the 

phase spectrum. 

Properties of Discrete Fourier Series 

A periodic signal x[n] with DFS coefficients Xk is represented as 

𝑥[𝑛]  ↔  𝑋𝑘 

1. Linearity 

If x[n] and y[n] are two periodic signals with period N, and their corresponding DFS coefficients are 

Xk and Yk .i.e., 

If 𝑥[𝑛]  ↔  𝑋𝑘 

And y[𝑛]  ↔  𝑌𝑘 

Then, A𝑥[𝑛] + 𝐵𝑦[𝑛] ↔  𝐴𝑋𝑘 + 𝐵𝑌𝑘 

 

2. Time – shifting 

If 𝑥[𝑛]  ↔  𝑋𝑘 

then x[𝑛 − 𝑛0]  ↔  𝑒
−𝑗𝑘𝜔0𝑛0𝑋𝑘 

 

3. Frequency – shifting 

If 𝑥[𝑛]  ↔  𝑋𝑘 

Then  𝑒𝑗𝑛𝜔0𝑘0𝑥[𝑛]  ↔  𝑋𝑘−𝑘0 

 

4. Time – reversal 

If 𝑥[𝑛]  ↔  𝑋𝑘 

Then 𝑥[−𝑛]  ↔  𝑋−𝑘 

 

5. Periodic convolution 

If 𝑥[𝑛]  ↔  𝑋𝑘 

And y[𝑛]  ↔  𝑌𝑘 

Then, ∑ 𝑥[𝑟]𝑦[𝑛 − 𝑟] ↔ 𝑁𝑋𝑘𝑌𝑘𝑟=〈𝑁〉  

6. Multiplication 

If 𝑥[𝑛]  ↔  𝑋𝑘 

And y[𝑛]  ↔  𝑌𝑘 

Then 𝑥[𝑛]𝑦[𝑛] ↔ ∑ 𝑋𝑟𝑌𝑘−𝑟𝑟=〈𝑁〉  
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7. Complex conjugation 

If 𝑥[𝑛]  ↔  𝑋𝑘 

Then 𝑥∗[𝑛]  ↔  𝑋∗−𝑘 

 

8. Parseval’s Relation 

 

1

𝑁
∑ |𝑥[𝑛]|2

𝑛=〈𝑁〉

= ∑ |𝑋𝑘|
2

𝑘=〈𝑁〉

 

 

Discrete – Fourier Transform (DFT) 

 

The Fourier transform of a discrete – time non periodic sequence x[n] is given by 

𝑋(𝜔) = ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑛
∞

𝑛=−∞

 

If the sequence is of finite length N, then 

𝑋(𝜔) = ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑛
𝑁−1

𝑛=0

 

Now, sampling X(ω) at equally spaced frequencies in ω .i.e., at 𝜔𝑘 =
2𝜋

𝑁
𝑘, 𝑘 = 0,1,2,⋯ ,𝑁 − 1, we 

obtain the Discrete – Fourier Transform 

 

𝑋(𝑘) = 𝑋(𝜔)|
𝜔=
2𝜋𝑘
𝑁
= ∑ 𝑥[𝑛]𝑒

−𝑗2𝜋𝑘𝑛
𝑁

𝑁−1

𝑛=0

= ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

 , 𝑘 = 0,1,⋯ ,𝑁 − 1 

The Inverse Discrete – Fourier Transform is given by 

𝑥[𝑛] =
1

𝑁
∑𝑋(𝑘)𝑒

𝑗2𝜋𝑘𝑛
𝑁

𝑁−1

𝑛=0

=
1

𝑁
∑ 𝑋(𝑘)𝑊𝑁

−𝑛𝑘

𝑁−1

𝑛=0

, 𝑛 = 0, 1,⋯ ,𝑁 − 1 

Where 𝑊𝑁 = 𝑒
−𝑗
2𝜋

𝑁 = 𝑇𝑤𝑖𝑑𝑑𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

 

Properties of DFT 

 

1. Periodicity 

If 𝑥[𝑛]  ↔  𝑋(𝑘) 
then 

𝑋(𝑘 + 𝑚𝑁) = 𝑋(𝑘),𝑚 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

𝑎𝑛𝑑, 𝑥[𝑛 + 𝑚𝑁] = 𝑥[𝑛], 𝑚 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

 

i.e., both DFT and Inverse DFT are periodic with period N. 
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2. Linearity 

If 𝑥1[𝑛]  ↔  𝑋1(𝑘) 
And 𝑥2[𝑛]  ↔  𝑋2(𝑘) 

 

Then 𝐴𝑥1[𝑛] + 𝐵𝑥2[𝑛]  ↔  𝐴𝑋1(𝑘) + 𝐵𝑋2(𝑘) 
 

 

3. Circular Time Shifting 

An N – point sequence x[n] is defined for 0 ≤ n ≤ N-1, and zero for other values of n. for any 

integer n0, the shifted sequence x[n-n0] is no longer defined for the range 0 ≤ n ≤ N-1. But, by 

definition, DFT requires signal values in the range 0 ≤ n ≤ N-1. To achieve this, using the 

periodicity property of IDFT, we consider xp[n], the periodic extension of x[n]. We delay this by 

n0 samples and consider N samples between 0 ≤ n ≤ N-1. Let this sequence be represented as 

xc[n]. This is equivalent to moving the last n0 samples of x[n] to the beginning of the sequence. 

This is called circular shift.  

 

Thus, a circular shift of an N – point sequence is equivalent to a linear shift of its periodic 

extension.  

The finite – duration circular time shifted sequence xc[n] is related to the original sequence x[n] 

by a modulo operation. 

𝑥𝑐[𝑛] = 𝑥[〈𝑛 − 𝑛0〉𝑁] 

 

Modulo Operation: if the argument (n – n0) is between 0 and N-1, then leave it as it is; 

otherwise, add or subtract multiples of N from the argument (n – n0) until the result is between 0 

and N – 1.  

 

If 𝑥[𝑛]  
𝑁−𝑝𝑜𝑖𝑛𝑡 𝐷𝐹𝑇
↔          𝑋[𝑘] 

Then 𝑥[〈𝑛 − 𝑛0〉𝑁]  
𝑁−𝑝𝑜𝑖𝑛𝑡 𝐷𝐹𝑇
↔          𝑋[𝑘]𝑊𝑁

𝑘𝑛0 

4. Circular frequency shifting 

 

If 𝑥[𝑛]  
𝑁−𝑝𝑜𝑖𝑛𝑡 𝐷𝐹𝑇
↔          𝑋[𝑘] 

Then 𝑊𝑁
−𝑛𝑘0𝑥[𝑛]  

𝑁−𝑝𝑜𝑖𝑛𝑡 𝐷𝐹𝑇
↔          𝑋[〈𝑘 − 𝑘0〉𝑁] 

 

5. Circular time reversal 

An N – point sequence x[n] is defined for 0 ≤ n ≤ N-1, and zero for other values of n. The time 

reversed sequence x[- n] is no longer defined for the range 0 ≤ n ≤ N-1. But, by definition, DFT 

requires signal values in the range 0 ≤ n ≤ N-1. To achieve this, using the periodicity property of 

IDFT, we consider xp[n], the periodic extension of x[n]. We time reverse (or flip) this and 

consider N samples between 0 ≤ n ≤ N-1. Let this sequence be represented as xc[n]. If x[n] is 

plotted on a circle in anti-clockwise direction, time reversal is equivalent to plotting the sequence 
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in clockwise direction.. This is called circular time reversal. xc[n] is related to the original signal 

x[n] by the modulo operation 

𝑥𝑐[𝑛] = 𝑥[〈−𝑛〉𝑁] 

 

If 𝑥[𝑛]  
𝑁−𝑝𝑜𝑖𝑛𝑡 𝐷𝐹𝑇
↔          𝑋[𝑘] 

Then 𝑥[〈−𝑛〉𝑁]  
𝑁−𝑝𝑜𝑖𝑛𝑡 𝐷𝐹𝑇
↔          𝑋[〈−𝑘〉𝑁] 

Circularly even sequence 

An N – point sequence x[n] is called circularly even if it is symmetric about the point zero on the 

circle. This implies that 

𝑥[𝑛] = 𝑥[〈−𝑛〉𝑁] = 𝑥[𝑁 − 𝑛], 1 ≤ 𝑛 ≤ 𝑁 − 1 

Circularly odd sequence 

An N – point sequence x[n] is called circularly odd if it is antisymmetric about the point zero on 

the circle. This implies that 

𝑥[𝑛] = −𝑥[〈−𝑛〉𝑁] = −𝑥[𝑁 − 𝑛], 1 ≤ 𝑛 ≤ 𝑁 − 1 

 

6. Conjugate symmetry 

If 𝑥[𝑛]  
𝑁−𝑝𝑜𝑖𝑛𝑡 𝐷𝐹𝑇
↔          𝑋[𝑘] 

Then 𝑥∗[𝑛]  
𝑁−𝑝𝑜𝑖𝑛𝑡 𝐷𝐹𝑇
↔          𝑋∗[〈−𝑘〉𝑁] 

 

7. Circular convolution 

 

If 𝑥1[𝑛] 
𝑁−𝑝𝑜𝑖𝑛𝑡 𝐷𝐹𝑇
↔          𝑋1(𝑘) 

And 𝑥2[𝑛] 
𝑁−𝑝𝑜𝑖𝑛𝑡 𝐷𝐹𝑇
↔          𝑋2(𝑘) 

 

Then𝑥1[𝑛]  ⊗ 𝑥2[𝑛]
𝑁−𝑝𝑜𝑖𝑛𝑡 𝐷𝐹𝑇
↔         𝑋1(𝑘)𝑋2(𝑘) 

DFT as a Linear Transformation 

The Discrete Fourier Transform can be calculated using matrix notation. 

𝑋(𝑘) = ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

 , 𝑘 = 0,1,⋯ ,𝑁 − 1 

Where 𝑊𝑁 = 𝑒
−𝑗
2𝜋

𝑁  

Expanding the above equation 

𝑋(0) = 𝑥[0] + 𝑥[1] + 𝑥[2] + ⋯⋯+ 𝑥[𝑁 − 1] 

𝑋(1) = 𝑥[0] + 𝑥[1]𝑊𝑁 + 𝑥[2]𝑊𝑁
2 +⋯⋯+ 𝑥[𝑁 − 1]𝑊𝑁

(𝑁−1)
 

⋮ 
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𝑋(𝑁 − 1) = 𝑥[0] + 𝑥[1]𝑊𝑁
(𝑁−1) + 𝑥[2]𝑊𝑁

2(𝑁−1) +⋯⋯+ 𝑥[𝑁 − 1]𝑊𝑁
(𝑁−1)(𝑁−1)

 

Expressing the above set of equations in matrix notation, we obtain 

[
 
 
 
 
𝑋(0)
𝑋(1)
𝑋(2)
⋮

𝑋(𝑁 − 1)]
 
 
 
 

=

[
 
 
 
 
 
1 1 1 ⋯ 1

1 𝑊𝑁 𝑊𝑁
2 ⋯ 𝑊𝑁

(𝑁−1)

1 𝑊𝑁
2 𝑊𝑁

4 ⋯ 𝑊𝑁
2(𝑁−1)

⋮ ⋮ ⋮ ⋯ ⋮

1 𝑊𝑁
(𝑁−1)

𝑊𝑁
2(𝑁−1)

⋯ 𝑊𝑁
(𝑁−1)(𝑁−1)

]
 
 
 
 
 

[
 
 
 
 
𝑥[0]
𝑥[1]
𝑥[2]
⋮

𝑥[𝑁 − 1]]
 
 
 
 

 

𝑜𝑟, �̅� = 𝑾𝑵
̅̅ ̅̅ ̅  �̅� ………𝐸𝑞𝑛. 𝐴 

Similarly, for the IDFT equation, 𝑥[𝑛] =
1

𝑁
∑ 𝑋(𝑘)𝑊𝑁

−𝑛𝑘𝑁−1
𝑛=0 , 𝑛 = 0, 1,⋯ ,𝑁 − 1, the matrix notation would 

be  

�̅� =
1

𝑁
𝑾𝑵
̅̅ ̅̅ ̅∗  �̅� ………𝐸𝑞𝑛 𝐵  

But, from equation A,  

�̅� = 𝑾𝑵
̅̅ ̅̅ ̅−𝟏  �̅� …… . . 𝐸𝑞𝑛. 𝐶 

From Equations B & C, we have 

𝑾𝑵
̅̅ ̅̅ ̅−𝟏 =

1

𝑁
𝑾𝑵
̅̅ ̅̅ ̅∗ 

Linear Convolution Using Circular Convolution 

The output of an LTI system is the linear convolution of the input x[n] and the system’s impulse response 

h[n]. the DFT is a practical approach for implementing linear system operations in the frequency domain. 

But, the problem is, the DFT operations result in a circular convolution in time domain , and not the linear 

convolution. i.e., 𝑋1(𝑘)𝑋2(𝑘)
𝑁−𝑝𝑜𝑖𝑛𝑡 𝐼𝐷𝐹𝑇
↔         𝑥1[𝑛]  ⊗ 𝑥2[𝑛] 

Let x[n] be of length Nx and h[n] be of length Nh, and let Nx > Nh. then, the result of linear convolution is of 

length N = Nx + Nh – 1 , whereas that of cicular convolution is of length N = max (Nx, Nh). 

For circular convolution to yield the same result as the linear convolution, both the sequences must be zero – 

padded so that both are of length Nx + Nh – 1. Let the padded sequences be xp[n] and hp[n]. then we compute 

the N (= Nx + Nh – 1) point circular convolution of xp[n] and hp[n], resulting in a sequence equal to the linear 

convolution x[n]*h[n]. 

i.e., 𝑋𝑝(𝑘)𝐻𝑝(𝑘)
𝑁−𝑝𝑜𝑖𝑛𝑡 𝐼𝐷𝐹𝑇
↔         𝑥[𝑛] ∗ ℎ[𝑛] 

Filtering of Long Data sequences using DFT 

To filter signals like speech signals, etc., which are long data sequences, using DFT, it is required to compute 

a large DFT. Moreover, the output samples are not available until all the input samples are produced , thus 
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introducing an unacceptably large amount of delay. To overcome this problem, the input sequence is divided 

into smaller sections/blocks, and each block is processed via DFT and IDFT to produce a block of output 

data. The output blocks are fitted together to yield the final output sequence. This procedure is called 

sectioned / block convolution. There are two ways to do this: overlap – save method and overlap – add 

method. 

Overlap – save method 

Let h[n] be the impulse response of length M, and x[n] be the input sequence of length much greater than M.  

• x[n] is divided into sections xr[n], each of length N, so that each input section overlaps the preceding 

section by M – 1 samples. 

• The first M – 1 samples of the first section are set to zero. 

• Then, the N – point circular convolution, yr[n] of each section xr[n] with h[n] is obtained. 

• The first M – 1 samples of each output section must be discarded. 

• The remaining N – M + 1 samples from each successive sections are concatenated to reconstruct the 

final filtered output. 

Overlap – add method 

• x[n] is represented as a sum of finite – length segments of length N 

𝑥[𝑛] =  ∑𝑥𝑟
𝑟

[𝑛 − 𝑟𝑁] 

Where 𝑥𝑟[𝑛] =  {
𝑥[𝑛 + 𝑟𝑁], 0 ≤ 𝑛 ≤ 𝑁 − 1

0, 𝑒𝑙𝑠𝑒
 

 

• the final output of the filter is given by the linear convolution  

𝑦[𝑛] = ℎ[𝑛] ∗  𝑥[𝑛] = ℎ[𝑛] ∗  ∑𝑥𝑟
𝑟

[𝑛 − 𝑟𝑁] 

=∑𝑦𝑟
𝑟

[𝑛 − 𝑟𝑁] 

Where 𝑦𝑟[𝑛] = ℎ[𝑛] ∗  𝑥𝑟[𝑛] 

 

Since h[n] is of length M and 𝑥𝑟[𝑛] is of length N, the linear convolution result 𝑦𝑟[𝑛] is of length N + 

M – 1, which can be obtained using N + M – 1 point DFTs. 

• Since 𝑥𝑟[𝑛] is the section of x[n] starting at n = rN, so 𝑦𝑟[𝑛] also starts at n = rN. But, each 𝑦𝑟[𝑛] is 

of length N + M – 1, whereas each 𝑥𝑟[𝑛] is of length N. 

i.e., 

𝑦0[𝑛] = ℎ[𝑛] ∗  𝑥0[𝑛], 0 ≤ 𝑛 ≤ 𝑁 +𝑀 − 2 

𝑦1[𝑛] = ℎ[𝑛] ∗  𝑥1[𝑛], 𝑁 ≤ 𝑛 ≤ 2𝑁 +𝑀 − 2 

𝑦2[𝑛] = ℎ[𝑛] ∗  𝑥2[𝑛], 2𝑁 ≤ 𝑛 ≤ 3𝑁 +𝑀 − 2, 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛 
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So, there is an overlap of M – 1 samples between every two consecutive sections. These overlapping 

samples must be added to obtain final output. 

 

Fast Fourier Transform (FFT) 

Fast Fourier Transform is an efficient algorithm developed by Cooley & Tukey in 1965, used to compute the 

DFT with reduced computations. Due to the efficiency of FFT, it is used for spectrum analysis, convolutions, 

correlations and linear filtering. 

FFT reduces the problem of calculating an N – point DFT to that of calculating many smaller – sized DFTs. 

The properties of the twiddle factor WN used in this algorithm are: 

1. 𝑊𝑁
𝑘+

𝑁

2 = 𝑒−
𝑗2𝜋𝑘

𝑁 𝑒−𝑗𝜋 = − 𝑊𝑁
𝑘  (Symmetry Property) 

2. 𝑊𝑁
𝑘+𝑁 = 𝑒−

𝑗2𝜋𝑘

𝑁 𝑒−𝑗2𝜋 =  𝑊𝑁
𝑘 (periodicity property) 

3. 𝑊𝑁
𝑚 = 𝑒−

𝑗2𝜋𝑚

𝑁 = 𝑒
−
𝑗2𝜋
𝑁
𝑚⁄ = 𝑊𝑁

𝑚⁄
 

The Decimation – In – Time (DIT) and Decimation – In – Frequency (DIF) FFT algorithms use the “divide – 

and – conquer” approach. This is possible if the length of the sequence N is chosen as N = rm. here, r is called 

the radix of the FFT algorithm. The most practically implemented choice for r = 2 leads to radix – 2 FFT 

algorithms. So, with N = 2m, the efficient computation is achieved by breaking the N – point DFT into two 
𝑁

2
 

- point DFTs, then breaking each 
𝑁

2
 - point DFT into two 

𝑁

4
 - point DFTs and continuing this process until 2 – 

point DFTs are obtained. For N=8, the Decimation – In – Time algorithm decomposition would be 

 

Decimation – In – Time (DIT) FFT algorithm 
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In this algorithm, the time – domain sequence x[n] is decimated into two 
𝑁

2
 – point sequences, one composed 

of even – indexed values of x[n], and other composed of odd – indexed values of x[n].i.e., 

𝑔[𝑛] = 𝑥[2𝑛]……… . 𝑒𝑞𝑛. 1 

𝑎𝑛𝑑, ℎ[𝑛] = 𝑥[2𝑛 + 1]……… . 𝑒𝑞𝑛. 2 

The N – point DFT of x[n] is given by 

𝑋(𝑘) = ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

 , 𝑘 = 0,1,⋯ ,𝑁 − 1 

This can be rewritten as 

𝑋(𝑘) = ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0,𝑒𝑣𝑒𝑛

+ ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0,𝑜𝑑𝑑

 

= ∑ 𝑥[2𝑛]𝑊𝑁
2𝑛𝑘

𝑁
2
−1

𝑛=0

+ ∑ 𝑥[2𝑛 + 1]𝑊𝑁
(2𝑛+1)𝑘

𝑁
2
−1

𝑛=0

 

= ∑ 𝑥[2𝑛]𝑊𝑁
2𝑛𝑘

𝑁
2
−1

𝑛=0

+ 𝑊𝑁
𝑘∑𝑥[2𝑛 + 1]𝑊𝑁

2𝑛𝑘

𝑁
2
−1

𝑛=0

 

Using the third property of the twiddle factor, WN, the above equation can be rewritten as 

= ∑ 𝑥[2𝑛]𝑊𝑁
2⁄

𝑛𝑘

𝑁
2
−1

𝑛=0

+ 𝑊𝑁
𝑘∑𝑥[2𝑛 + 1]𝑊𝑁

2⁄
𝑛𝑘

𝑁
2
−1

𝑛=0

 

Using equations 1 & 2 in the above equation, we obtain 

𝑋(𝑘) = ∑ 𝑔[𝑛]𝑊𝑁
2⁄

𝑛𝑘

𝑁
2
−1

𝑛=0

+ 𝑊𝑁
𝑘∑ℎ[𝑛]𝑊𝑁

2⁄
𝑛𝑘

𝑁
2
−1

𝑛=0

 

𝑜𝑟, 𝑋(𝑘) = 𝐺(𝑘) +𝑊𝑁
𝑘𝐻(𝑘)……𝑒𝑞𝑛. 3 

Where G(k) and H(k) are the N/2 – point DFTs of g[n] and h[n] respectively. So, G(k) and H(k) are periodic 

with period N/2 .i.e., 

𝐺 (𝑘 +
𝑁

2
) = 𝐺(𝑘)……𝑒𝑞𝑛. 4 

𝑎𝑛𝑑,𝐻 (𝑘 +
𝑁

2
) = 𝐻(𝑘)……𝑒𝑞𝑛. 5 
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And using the symmetry property of the twiddle factor, WN, and equations4 & 5 

𝑋(𝑘 + 𝑁/2) = 𝐺(𝑘) −𝑊𝑁
𝑘𝐻(𝑘)……𝑒𝑞𝑛. 6 

Equations 3 and 6 result in the following butterfly diagram 

 

For example, for N = 8, the DFT points in terms of G and H are 

𝑋(0) = 𝐺(0) +𝑊𝑁
0𝐻(0) 

𝑋(1) = 𝐺(1) +𝑊𝑁
1𝐻(1) 

𝑋(2) = 𝐺(2) +𝑊𝑁
2𝐻(2) 

𝑋(3) = 𝐺(3) +𝑊𝑁
3𝐻(3) 

For the remaining 4 points X(4) to X(7), we use equations 4, 5, 6 and 7 to get 

𝑋(4) = 𝐺(0) −𝑊𝑁
0𝐻(0) 

𝑋(5) = 𝐺(1) −𝑊𝑁
1𝐻(1) 

𝑋(6) = 𝐺(2) −𝑊𝑁
2𝐻(2) 

𝑋(7) = 𝐺(3) −𝑊𝑁
3𝐻(3) 

The butterfly diagram for the above set of equations is  
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The above process is repeated for calculating the N/2 point DFTs of g[n] and h[n], and this is continued till 

we get two point DFTs. Once we reach a two – point sequence, say p[n]={p[0], p[1]}, its 2 – point DFT 

would be 

𝑃(𝑘) = ∑ 𝑝[𝑛]𝑊2
𝑛𝑘

1

𝑛=0

 , 𝑘 = 0,1 

𝑜𝑟, 𝑃(𝑘) = 𝑝[0] + 𝑝[1]𝑊2
𝑘, , 𝑘 = 0,1 

⇒ 𝑃(0) = 𝑝[0] + 𝑝[1] 

𝑎𝑛𝑑 𝑃(1) = 𝑝[0] +𝑊2𝑝[1] = 𝑝[0] − 𝑝[1] 

The overall butterfly diagram for DIT FFT algorithm for N =8 is 
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Due to repeated decimations, the input sequence is scrambled, and the order of the final input sequence is 

obtained as follows 

Input sequence Index 
Binary form of 

index 

Bit reversed 

form of index 

Decimal 

representation 

Final input 

sequence order 

x[0] 0 000 000 0 x[0] 

x[1] 1 001 100 4 x[4] 

x[2] 2 010 010 2 x[2] 

x[3] 3 011 110 6 x[6] 

x[4] 4 100 001 1 x[1] 

x[5] 5 101 101 5 x[5] 

x[6] 6 110 011 3 x[3] 

x[7] 7 111 111 7 x[7] 

 

Decimation – In – Frequency (DIF) FFT algorithm 

In this algorithm, we decimate the DFT sequence X(k) into smaller and smaller subsequences (Instead of the 

time – domain sequence x[n]). 

𝑋(𝑘) = ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

=∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁
2−1

𝑛=0

+∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=
𝑁
2

 

= ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁
2
−1

𝑛=0

+∑ 𝑥[𝑛 +
𝑁

2
]𝑊𝑁

𝑛𝑘

𝑁
2
−1

𝑛=0

𝑊𝑁

𝑁
2
𝑘
 

𝑏𝑢𝑡,𝑊𝑁

𝑁
2
𝑘
= (−1)𝑘 
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𝑋(𝑘) = ∑ {𝑥[𝑛] + (−1)𝑘𝑥 [𝑛 +
𝑁

2
]}𝑊𝑁

𝑛𝑘

𝑁
2
−1

𝑛=0

, 𝑘 = 0,1, … ,𝑁 − 1 

Now, decimating X(k) into even and odd – indexed samples, 

𝑋(2𝑘) = ∑ {𝑥[𝑛] + 𝑥 [𝑛 +
𝑁

2
]}𝑊𝑁

2

𝑛𝑘

𝑁
2
−1

𝑛=0

, 𝑘 = 0,1, … ,
𝑁

2
− 1……𝑒𝑞𝑛. 1 

𝑋(2𝑘 + 1) = ∑ {𝑥[𝑛] − 𝑥 [𝑛 +
𝑁

2
]}𝑊𝑁

𝑛 𝑊𝑁
2

𝑛𝑘

𝑁
2
−1

𝑛=0

, 𝑘 = 0,1, … ,
𝑁

2
− 1……𝑒𝑞𝑛. 2 

𝑙𝑒𝑡 𝑔[𝑛] = 𝑥[𝑛] + 𝑥 [𝑛 +
𝑁

2
] , 0 ≤ 𝑛 ≤

𝑁

2
− 1……𝑒𝑞𝑛. 3 

𝑎𝑛𝑑, ℎ[𝑛] = {𝑥[𝑛] − 𝑥 [𝑛 +
𝑁

2
]}𝑊𝑁

𝑛, 0 ≤ 𝑛 ≤
𝑁

2
− 1……𝑒𝑞𝑛. 4 

Substituting equations 3 & 4 in equations 1 & 2 respectively 

𝐺(𝑘) = 𝑋(2𝑘), 0 ≤ 𝑘 ≤
𝑁

2
− 1 

𝑎𝑛𝑑, 𝐻(𝑘) = 𝑋(2𝑘 + 1) 0 ≤ 𝑘 ≤
𝑁

2
− 1 

For example, for N=8, using equations 3 & 4, we get 

𝑔[0] = 𝑥[0] + 𝑥[4] 

𝑔[1] = 𝑥[1] + 𝑥[5] 

𝑔[2] = 𝑥[2] + 𝑥[6] 

𝑔[3] = 𝑥[3] + 𝑥[7] 

ℎ[0] = {𝑥[0] − 𝑥[4]}𝑊8
0 

ℎ[1] = {𝑥[1] − 𝑥[5]}𝑊8
1 

ℎ[2] = {𝑥[2] − 𝑥[6]}𝑊8
2 

ℎ[3] = {𝑥[3] − 𝑥[7]}𝑊8
3 
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the butterfly diagram for the above set of equations is as follows 

 

The above process of decimation is repeated for G(k) and H(k), until we reach a 2 – point sequence. The 2 – 

point DFT is calculated as in the previous section. The final butterfly diagram for Decimation – In – 

Frequency FFT algorithm for N = 8 is as follows 
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In this algorithm, the output X(k) is in bit –reversed order. 

Efficiency of FFT algorithm 

A direct computation of DFT requires a large number of multiplications and additions. An N – point DFT is 

given by 

𝑋(𝑘) = ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

 , 𝑘 = 0,1,⋯ ,𝑁 − 1 

 

In the above equation, each DFT point computation involves N complex multiplications and (N – 1) complex 

additions. So, the N – point DFT calculations involve N2 complex multiplications and N(N – 1) complex 

additions. This means approximately 106 complex multiplications and additions for a 1024 – point 

sequence. 

On the other hand, in an FFT algorithm, a basic butterfly in DIT – FFT algorithm is represented as  

 

And for DIF – FFT algorithm, it is represented as 

 

• Number of stages in a butterfly diagram =log2𝑁 

• Number of butterflies in each stage=N/2 

• Number of complex multiplications in each butterfly=1 

• Number of complex additions in each butterfly=2. 
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From the above, for an N – point FFT algorithm, 

• Total number of complex multiplications =
𝑁

2
log2𝑁 

• Total number of complex additions = 𝑁 log2𝑁 

For a 1024 – point sequence, this means approximately 5120 complex multiplications and 10240 

complex additions. i.e., approximately 100 times less additions and 200 times less multiplications than 

direct computation of DFT. 

As the number of input samples increase, the savings in the number of computations also increase.  

In – Place computations 

Another advantage of FFT algorithm is In – Place computations. As shown in the previous diagram of a basic 

butterfly, any butterfly calculation involves 2 complex inputs a and b, and 2 complex outputs A and B. once, 

these two outputs are calculated, the inputs of the butterfly are not used in any other calculation. So, A and B 

can be stored in the same memory locations as a and b. this is called In – Place computation. 

Inverse FFT Algorithm 

Let X(k) be the N – point DFT of a length – N sequence x[n]. The inverse DFT is given by 

𝑥[𝑛] =
1

𝑁
∑𝑋(𝑘)𝑊𝑁

−𝑛𝑘

𝑁−1

𝑛=0

, 𝑛 = 0, 1,⋯ , 𝑁 − 1 

𝑜𝑟, 𝑥[𝑛] =
1

𝑁
∑ 𝑋(𝑘)(𝑊𝑁

𝑛𝑘)∗
𝑁−1

𝑛=0

, 𝑛 = 0, 1,⋯ ,𝑁 − 1 

An FFT algorithm can be used to compute the inverse DFT by replacing x[n] by X(k), taking the negative 

powers of WN, and dividing the output by N. Hence, in order to compute the inverse DFT from an FFT 

algorithm, following steps can be followed 

• Take X(k) as the input sequence and x[n] as the output sequence 

• Compute FFT by replacing the twiddle factors WN by 𝑊𝑁
−1 

• Divide the output sequence by N 

So, the DIT – FFT algorithm becomes DIF Inverse FFT algorithm and vice – versa. 

For example the DIT – Inverse FFT butterfly diagram for N =8 would be as follows 
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