UNIT-II
INTRODUCTION:
In previous chapters we have seen that an electrostatic field is produced by static or stationary charges. The relationship of the steady magnetic field to its sources is much more complicated. The source of steady magnetic field may be a permanent magnet, a direct current or an electric field changing with time. In this chapter we shall mainly consider the magnetic field produced by a direct current. The magnetic field produced due to time varying electric field will be discussed later. Historically, the link between the electric and magnetic field was established Oersted in

1820. Ampere and others extended the investigation of magnetic effect of electricity . There are two major laws governing the magnetostatic fields are:

Biot-Savart Law, (Ampere's Law )

Usually, the magnetic field intensity is represented by the vector  . It is customary to represent the direction of the magnetic field intensity (or current) by a small circle with a dot or cross sign depending on whether the field (or current) is out of or into the page as shown in Fig. 1.
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Fig. 1: Representation of magnetic field (or current)

Biot- Savart  Law
This law relates the magnetic field intensity dH produced at a point due to a differential current element  [image: image2.png]il



 as shown in Fig. 2.
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Fig. 2: Magnetic field intensity due to a current element

The magnetic field intensity  [image: image4.png]


 at P can be written as,
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Where  [image: image7.png]


 is the distance of the current element from the point P.

Similar to different charge distributions, we can have different current distribution such as line current, surface current and volume current. These different types of current densities are shown in Fig. 3.
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Fig. 3: Different types of current distributions

By denoting the surface current density as K (in amp/m) and volume current density as J (in amp/m2) we can write:
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 ......................................(2) ( It may be noted that [image: image10.png]


    )

Employing Biot-Savart Law, we can now express the magnetic field intensity H. In terms of these current distributions.
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  ............................. for line current............................(3a) [image: image12.png]


   ........................ for surface current ....................(3b) [image: image13.png]


 ....................... for volume current......................(3c)

AMPERE'S CIRCUITAL LAW:
Ampere's circuital law states that the line integral of the magnetic field  [image: image14.png]


 (circulation of H )

around a closed path is the net current enclosed by this path. Mathematically,

[image: image15.png]


         ......................................(4) The total current I enc can be written as,
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 ......................................(5) By applying Stoke's theorem, we can write

which is the Ampere's law in the point form.

Applications  of Ampere's law:

......................................(6)

We illustrate the application of Ampere's Law with some examples.

Example : We compute magnetic field due to an infinitely long thin current carrying conductor as shown in Fig. 4. Using Ampere's Law, we consider the close path to be a circle of radius [image: image17.png]


   as

shown in the Fig. 4.
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If  we  consider  a  small  current  element  [image: image18.png]1A= Idzd,)
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  is perpendicular to the plane containing both  [image: image20.png]


and  [image: image21.png]R(=pd,)



 . Therefore only component of          that will be present is [image: image22.png]
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.

By applying Ampere's law we can write,
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   ......................................(7) Therefore,   [image: image25.png]


    which is same as equation (8)
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Fig. 4.:Magnetic field due to an infinite thin current carrying conductor Example  :  We  consider  the  cross  section of an infinitely long coaxial conductor, the inner conductor carrying a current I and outer conductor carrying current - I as shown in figure 4.6. We compute the magnetic field as a function of  [image: image27.png]


 as follows:

In the region   [image: image28.png]
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Fig. 5: Coaxial conductor carrying equal and opposite currents

[image: image115.png]


In the region  [image: image35.png]
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In the region   [image: image38.png]LR




MAGNETIC FLUX DENSITY:

......................................(14)
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In simple matter, the magnetic flux density         related to the magnetic field intensity         as [image: image39.png]


   where          called the permeability. In particular when we consider the free space
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 H/m is the permeability of the free space. Magnetic flux density
is measured in terms of Wb/m 2 .

The magnetic flux density through a surface is given by:
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  Wb      ......................................(15)

In the case of electrostatic field, we have seen that if the surface is a closed surface, the net flux passing through the surface is equal to the charge enclosed by the surface. In case of magnetic

field isolated magnetic charge (i. e. pole) does not exist. Magnetic poles always occur in pair (as N-S). For example, if we desire to have an isolated magnetic pole by dividing the magnetic bar successively into two, we end up with pieces each having north (N) and south (S) pole as shown in Fig. 6 (a). This process could be continued until the magnets are of atomic dimensions; still we will have N-S pair occurring together. This means that the magnetic poles cannot be isolated.
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Fig. 6: (a) Subdivision of a magnet (b) Magnetic field/ flux lines of a straight current carrying conductor

Similarly if we consider the field/flux lines of a current carrying conductor as shown in Fig. 6 (b), we find that these lines are closed lines, that is, if we consider a closed surface, the number of flux lines that would leave the surface would be same as the number of flux lines that would enter the surface.

From our discussions above, it is evident that for magnetic field,
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which is the Gauss's law for the magnetic field. By applying divergence theorem, we can write:
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Hence,                                                       ......................................(17)

which is the Gauss's law for the magnetic field in point form.

MAGNETIC SCALAR AND VECTOR POTENTIALS:
In studying electric field problems, we introduced the concept of electric potential that simplified the computation of electric fields for certain types of problems. In the same manner let us relate the magnetic field intensity to a scalar magnetic potential and write:
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 ...................................(18) From Ampere's law , we know that
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Therefore,  [image: image48.png]
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But using vector identity,   [image: image49.png]VX(VV)=0



we find that  [image: image50.png]


    is valid only where  [image: image51.png]


 . Thus the scalar magnetic potential is defined only in the region where [image: image52.png]


   . Moreover, Vm in general is not a single valued function of position.

This point can be illustrated as follows. Let us consider the cross section of a coaxial line as shown in fig 7.
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In the region                ,               and  [image: image53.png]
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Fig. 7: Cross Section of a Coaxial Line

If Vm is the magnetic potential then,
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If we set Vm = 0 at           then c=0 and
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We observe that as we make a complete lap around the current carrying conductor , we reach

again but Vm this time becomes
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We observe that value of Vm keeps changing as we complete additional laps to pass through the same point. We introduced Vm analogous to electostatic potential V. But for static electric fields,
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             , whereas for steady magnetic field                    wherever but [image: image59.png]fpﬁ di=1



    even if            along the path of integration.

We now introduce the vector magnetic potential which can be used in regions where

current density may be zero or nonzero and the same can be easily extended to time varying cases. The use of vector magnetic potential provides elegant ways of solving EM field problems.
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Since               and we have the vector identity that for any vector      ,  [image: image60.png]v (vxd)=0
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 .

Here, the vector field    [image: image62.png]


 is   called the vector magnetic potential. Its SI unit is Wb/m. Thus if can find  [image: image63.png]


  of a given current distribution,  [image: image64.png]


  can be found from   [image: image65.png]


  through a curl operation. We have introduced the vector function   [image: image66.png]
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 related its curl to  [image: image68.png]


. A vector function is defined fully in terms of its curl as well as divergence. The choice of  [image: image69.png]


 is made as follows.
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By using vector identity,                                            ...........................................(24)
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Great deal of simplification can be achieved if we choose [image: image72.png]
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   , we get [image: image74.png]


   which is vector poisson equation.

In Cartesian coordinates, the above equation can be written in terms of the components as
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The form of all the above equation is same as that of
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for which the solution is
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In case of time varying fields we shall see that  [image: image80.png]


  , which is known as Lorentz condition,  V  being  the electric potential. Here we are dealing with static magnetic field, so
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 .

By comparison, we can write the solution for Ax as
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Computing  similar  solutions  for  other  two  components  of  the  vector  potential,  the  vector potential can be written as
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This equation enables us to find the vector potential at a given point because of a volume current
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density     . Similarly for line or surface current density we can write
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respectively.                            ..............................(33) The magnetic flux [image: image84.png]


   through a given area S is given by
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Vector potential thus have the physical significance that its integral around any closed path is equal to the magnetic flux passing through that path.

Inductance and Inductor:
Resistance, capacitance and inductance are the three familiar parameters from circuit theory. We have already discussed about the parameters resistance and capacitance in the earlier chapters. In this section, we discuss about the parameter inductance. Before we start our discussion, let us first introduce the concept of flux linkage. If in a coil with N closely wound turns around where a current I produces a flux  [image: image88.png]


 and this flux links or encircles each of the N turns, the flux linkage

is defined as [image: image89.png]


. In a linear medium [image: image90.png]


, where the flux is proportional to the current, we
define the self inductance L as the ratio of the total flux linkage to the current which they link.

i.e.,             [image: image91.png]


...................................(36)
To further illustrate the concept of inductance, let us consider two closed loops C1 and C2 as shown in the figure 8, S1 and S2 are respectively the areas of C1 and C2 .
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Fig:8

If a current I1 flows in C1 , the magnetic flux B1 will be created part of which will be linked to

C2 as shown in Figure 8:
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In a linear medium,  [image: image94.png]s



   is proportional to I 1. Therefore, we can write

[image: image95.png]


  ...................................(38)

where L12 is the mutual inductance. For a more general case, if C2 has N2 turns then
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and   [image: image97.png]



or         [image: image98.png]


    ...................................(40)

i.e., the mutual inductance can be defined as the ratio of the total flux linkage of the second circuit to the current flowing in the first circuit.

As we have already stated, the magnetic flux produced in C1 gets linked to itself and if C1 has

N1 turns then [image: image99.png]


 , where [image: image100.png]


    is the flux linkage per turn. Therefore, self inductance
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=   [image: image101.png]


         ...................................(41) As some of the flux produced by I1 links only to C1 & not C2.
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Further in general, in a linear medium,                     and

Energy stored in Magnetic Field:
So far we have discussed the inductance in static forms. In earlier chapter we discussed the fact that work is required to be expended to assemble a group of charges and this work is stated as electric energy. In the same manner energy needs to be expended in sending currents through coils and it is stored as magnetic energy. Let us consider a scenario where we consider a coil  in  which  the  current  is  increased  from  0  to  a  value  I.  As  mentioned  earlier,  the  self inductance of a coil in general can be written as
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 ..................................(43b) If we consider a time varying scenario,
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We will later see that  [image: image106.png]


 is an induced voltage.
change of current.

is the voltage drop that appears across the coil and thus voltage opposes the

Therefore in order to maintain the increase of current, the electric source must do an work against this induced voltage.
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which is the energy stored in the magnetic circuit.

We can also express the energy stored in the coil in term of field quantities. For linear magnetic circuit
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   ...................................(48) where A is the area of cross section of the coil. If l is the length of the coil

[image: image111.png]NI = HI




[image: image140.png]


[image: image112.png]Lasa
2



         ...................................(49)

Al is the volume of the coil. Therefore the magnetic energy density i.e., magnetic energy/unit volume is given by

In vector form

...................................(50)
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J/mt3 ...................................(51)

is             the             energy             density             in             the             magnetic             field.
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