
DISTRIBUTED SYSTEMS UNIT II

1

Syllabus:Interprocess Communication: Introduction, The API for the Internet

Protocols- The Characteristics of Interprocess communication, Sockets, UDP

Datagram Communication, TCP Stream Communication; External Data

Representation and Marshalling; Client Server Communication; Group

Communication- IP Multicast- an implementation of group communication,

Reliability and Ordering of Multicast.

INTERPROCESS COMMUNICATION

Interposes communication in the Internet provides both datagram and stream communication.

The Java APIs for these are presented, together with a discussion of their failure models. They provide

alternative building blocks for communication protocols. This is complemented by a study of

protocols for the representation of collections of data objects in messages and of references to remote

objects.

Multicast is an important requirement for distributed applications and must be provided even if

underlying support for IP multicast is not available. This is typically provided by an overlay network

constructed on top of the underlying TCP/IP network. Overlay networks can also provide support for

file sharing, enhanced reliability and content distribution.

The API for the Internet protocols

The characteristics of intercrosses communication:

Message passing between a pair of processes can be supported by two message communication

operations, send and receive, defined in terms of destinations and messages. To communicate, one

process sends a message (a sequence of bytes) to a destination and another process at the destination

receives the message. This activity involves the communication of data from the sending process to

the receiving process and may involve the synchronization of the two processes.

Synchronous and asynchronous communication • A queue is associated with each message

destination. Sending processes cause messages to be added to remote queues and receiving processes

remove messages from local queues. Communication between the sending and receiving processes

may be either synchronous or asynchronous. In the synchronousform of communication, the sending

and receiving processes synchronize at very message. In this case, both send and receive are blocking

operations. Whenever a send is issued the sending process (or thread) is blocked until the

corresponding receive is issued. Whenever a receiveis issued by a process (or thread), it blocks until a

message arrives.

In the asynchronousform of communication, the use of the send operation is nonblocking in that the

sending process is allowed to proceed as soon as the message has been copied to a local buffer, and the

transmission of the message proceeds in parallel with the sending process. The receive operation can

have blocking and non-blocking variants. In the non-blocking variant, the receiving process proceeds

with its program after issuing a receive operation, which provides a buffer to be filled in the

background, but it must separately receive notification that its buffer has been filled, by polling or

interrupt.

DISTRIBUTED SYSTEMS UNIT II

2

Message destinations

A local port is a message destination within a computer, specified as an integer.

A port has an exactly one receiver but can have many senders.

Reliability

A reliable communication is defined in terms of validity and integrity.

A point-to-point message service is described as reliable if messages are guaranteed to be delivered

despite a reasonable number of packets being dropped or lost.

For integrity, messages must arrive uncorrupted and without duplication.

Sockets

Both forms of communication (UDP and TCP) use the socket abstraction, which provides an endpoint

for communication between processes. Sockets originate from BSD UNIX but are also present in most

other versions of UNIX, including Linux as well as Windows and the Macintosh OS. Interprocess

communication consists of transmitting a message between a socket in one process and a socket in

another process, as illustrated in Figure below.

For a process to receive messages, its socket must be bound to a local port and one of the Internet

addresses of the computer on which it runs. Messages sent to a particular Internet address and port

number can be received only by a process whose socket is associated with that Internet address and

port number. Processes may use the same socket for sending and receiving messages. Each computer

has a large number (216) of possible port numbers for use by local processes forreceiving messages.

Any process may make use of multiple ports to receive messages, but a process cannot share ports

with other processes on the same computer. (Processes using IP multicast are an exception in that they

do share ports However, any number of processes may send messages to the same port. Each socket is

associated with a particular protocol – either UDP or TCP.

UDP datagram communication

Datagram sent by UDP is transmitted from a sending process to a receiving process without

acknowledgement or retries. If a failure occurs, the message may not arrive. A datagram is transmitted

between processes when one process sends it and another receives it. To send or receive messages a

process must first create a socket bound to an Internet address of the local host and a local port. A

DISTRIBUTED SYSTEMS UNIT II

3

server will bind its socket to a server port – one that it makes known to clients so that they can send

messages to it. A client binds its socket to any free local port. The receive method returns the Internet

address and port of the sender, in addition to the message, allowing the recipient to send a reply. The

following are some issues relating to datagram communication:

• Message size:

The receiving process needs to specify an array of bytes of a particular size in which to receive

a message. If the message is too big for the array ,it is truncated on arrival. The underlying IP

protocol allows packet lengths of upto216 bytes, which includes the headers as well as the

message .However, most environments impose a size restriction of 8 kilobytes. Any

application requiring messages larger than the maximum must fragment the min to chunks of

that size.

• Blocking:

Sockets normally provide non-blocking sends and blocking receives for datagram

communication The send operation returns when it has handed the message to the underlying

UDP and IP protocols ,which are responsible for transmitting it to its destination .On arrival

,the message is placed in a queue for the socket that is bound to the destination port. The

method receive blocks until a datagram is received, unless a timeout has been set on the

socket.If the process that invokes the receive method has other work to do while waiting for the

message ,it should arrange to use a separate thread.

• Timeouts:

The receive that blocks for ever is suitable for use by a server that is waiting to receiver

requests from its clients. But in some programs, it is not appropriate that a process that has

invoked a receive operation should wait indefinitely in situations where the sending process

may have crashed or the expected message may have been lost.To allow for such

requirements, timeouts can be set on sockets. Choosing an appropriate timeout interval is

difficult, but it should be fairly large incomparison with the time required to transmit a

message.

• Receive from any

The receive method does not specify an origin for messages. Instead ,an invocation of receive

gets a message addressed to its socket from any origin.The receive method returns the

Internetaddress and local port of the sender, allowing the recipient to check where the message

came from.

Failure model for UDP datagrams •

Reliable communication in terms of two properties: integrity and validity. The integrity property

requires that messages should not be corrupted or duplicated. The use of a checksum ensures that there

is a negligible probability that any message received is corrupted. UDP datagrams suffer from the

following failures:

DISTRIBUTED SYSTEMS UNIT II

4

Omission failures: Messages may be dropped occasionally, either because of a checksum error or

because no buffer space is available at the source or destination. To simplify the discussion, we regard

send-omission and receive-omission failures as omission failures in the communication channel.

Ordering: Messages can sometimes be delivered out of sender order.

Applications using UDP datagrams are left to provide their own checks to achieve the quality of

reliable communication they require. A reliable delivery service may be constructed from one that

suffers from omission failures by the use of acknowledgements.

Use of UDP • For some applications, it is acceptable to use a service that is liable to occasional

omission failures. For example, the Domain Name System, which looks up DNS names in the Internet,

is implemented over UDP. Voice over IP (VOIP) also runs over UDP. UDP datagrams are sometimes

an attractive choice because they do not suffer from the overheads associated with guaranteed message

delivery. There are three main sources of overhead:

• The need to store state information at the source and destination;

• The transmission of extra messages;

• Latency for the sender.

UDP clientsendsamessagetotheserverandgetsareply

importjava.net.*;

importjava.io.*;

publicclassUDPClient{

publicstaticvoidmain(Stringargs[]){

// argsgivemessagecontentsandserverhostname

DatagramSocketaSocket= null;
try{

aSocket= newDatagramSocket();

byte[]m=args[0].getBytes();

InetAddressaHost= InetAddress.getByName(args[1]);

intserverPort= 6789;

DatagramPacketrequest=

newDatagramPacket(m,m.length(),aHost,serverPort);

aSocket.send(request);

byte[]buffer=newbyte[1000];

DatagramPacketreply=newDatagramPacket(buffer,buffer.length);

aSocket.receive(reply);

System.out.println("Reply:" + newString(reply.getData()));

}catch(SocketExceptione){System.out.println("Socket:"+e.getMessage());

}catch(IOExceptione){System.out.println("IO:"+e.getMessage());

}finally{if(aSocket!=null)aSocket.close();}

}
}

DatagramSocket:This class supportssockets for sending and receiving UDP
datagrams.Itprovidesaconstructorthattakesaportnumberasitsargument,foruse
byprocessesthatneedtouseaparticular port.Italsoprovidesano-argument
constructorthatallowsthesystemtochooseafreelocalport.

DISTRIBUTED SYSTEMS UNIT II

5

TheclassDatagramSocketprovidesmethodsthatincludethefollowing:

sendandreceive:Thesemethodsarefortransmittingdatagramsbetweenapair

ofsockets.TheargumentofsendisaninstanceofDatagramPacketcontaining amessageanditsdestination.

Theargumentofreceiveisanempty DatagramPacket inwhichtoputthemessage,itslengthanditsorigin.The

methodssendandreceivecanthrowIOExceptions.

setSoTimeout:Thismethodallowsatimeouttobeset.Withatimeoutset,thereceivemethodwillblockforthetimes

pecifiedandthenthrowanInterruptedIOException.

connect:Thismethodisusedforconnecting toaparticularremoteportand

Internetaddress,inwhichcasethesocketisonlyabletosendmessagestoand

receivemessagesfromthataddress.

UDP serverrepeatedlyreceivesarequestandsendsitbacktotheclient

importjava.net.*;

importjava.io.*;

publicclassUDPServer{

publicstaticvoidmain(Stringargs[]){

DatagramSocketaSocket= null;
try{

aSocket= newDatagramSocket(6789);

byte[]buffer=newbyte[1000]; while(true){

DatagramPacketrequest=newDatagramPacket(buffer,buffer.length);

aSocket.receive(request);

DatagramPacketreply=newDatagramPacket(request.getData(),

request.getLength(),request.getAddress(),request.getPort());
aSocket.send(reply);

}

}catch(SocketExceptione){System.out.println("Socket:"+e.getMessage());

}catch(IOExceptione){System.out.println("IO:"+e.getMessage());

} finally{if(aSocket!=null)aSocket.close();}

}
}

TCP stream communication

The API to the TCP protocol, which originates from BSD 4.x UNIX, provides the abstraction of a

stream of bytes to which data may be written and from which data may be read. The following

characteristics of the network are hidden by the stream abstraction:

Message sizes:

 The application can choose how much data it writes to a stream or reads from it. It may deal in very

small or very large sets of data. The underlying implementation of a TCP stream decides how much

data to collect before transmitting it as one or more IP packets. On arrival, the data is handed to the

application as requested. Applications can, if necessary, force data to be sent immediately.

Lost messages:

DISTRIBUTED SYSTEMS UNIT II

6

The TCP protocol uses an acknowledgement scheme. As an example of a simple scheme (which is not

used in TCP), the sending end keeps a record of each IP packet sent and the receiving end

acknowledges all the arrivals. If the sender does not receive an acknowledgement within a timeout, it

retransmits the message. The more sophisticated sliding window scheme [Comer 2006] cuts down on

the number of acknowledgement messages required

Flow control:

 The TCP protocol attempts to match the speeds of the processes that read from and write to a stream.

If the writer is too fast for the reader, then it is blocked until the reader has consumed sufficient data.

Message duplication and ordering:

Message identifiers are associated with each IP packet, which enables the recipient to detect and reject

duplicates, or to reorder messages that do not arrive in sender order.

Message destinations:

A pair of communicating processes establish a connection before they can communicate over a stream.

Once a connection is established, the processes simply read from and write to the stream without

needing to use Internet addresses and ports. Establishing a connection involves a connect request from

client to server followed by an accept request from server to client before any communication can take

place.

Failure model • To satisfy the integrity property of reliable communication, TCP streams use

checksums to detect and reject corrupt packets and sequence numbers to detect and reject duplicate

packets. For the sake of the validity property, TCP streams use timeouts and retransmissions to deal

with lost packets. Therefore, messages are guaranteed to be delivered even when some of the

underlying packets are lost. But if the packet loss over a connection passes some limit or the network

connecting a pair of communicating processes is severed or becomes severely congested, the TCP

software responsible for sending messages will receive no acknowledgements and after a time will

declare the connection to be broken. Thus TCP does not provide reliable communication, because it

does not guarantee to deliver messages in the face of all possible difficulties.

Use of TCP • Many frequently used services run over TCP connections, with reserved port numbers.

These include the following:

HTTP: The Hypertext Transfer Protocol is used for communication between web browsers and web

servers;

FTP: The File Transfer Protocol allows directories on a remote computer to be browsed and files to be

transferred from one computer to another over a connection.

Telnet: Telnet provides access by means of a terminal session to a remote computer.

SMTP: The Simple Mail Transfer Protocol is used to send mail between computers.

JavaAPIforTCPstreams•TheJavainterfacetoTCPstreamsisprovidedintheclassesServerSocketandSocket:

ServerSocket:Thisclassisintendedforusebyaservertocreateasocketataserver

portforlisteningforconnectrequestsfromclients.Its acceptmethodgetsaconnect requestfromthe queueor,

ifthe queueis empty,blocksuntilonearrives.Theresult ofexecutingacceptisaninstanceofSocket–

asockettouseforcommunicatingwith theclient.

DISTRIBUTED SYSTEMS UNIT II

7

TCPclientmakesconnection toserver,sendsrequestandreceivesreply

importjava.net.*;

importjava.io.*;

publicclassTCPClient{

publicstaticvoidmain(Stringargs[]){

//argumentssupplymessageandhostnameofdestination

Sockets=null;

try{

intserverPort=7896;

s=newSocket(args[1],serverPort);

DataInputStreamin=newDataInputStream(s.getInputStream());

DataOutputStreamout=

newDataOutputStream(s.getOutputStream());

out.writeUTF(args[0]); //UTFis astringencoding;seeSec4.3

Stringdata= in.readUTF();

System.out.println("Received:"+data);

}catch(UnknownHostExceptione){

System.out.println("Sock:"+e.getMessage());

} catch(EOFExceptione){System.out.println("EOF:"+e.getMessage());

} catch(IOExceptione){System.out.println("IO:"+e.getMessage());
}finally{if(s!=null)try{s.close();}catch(IOExceptione){/*closefailed*/}}

}
}

TheSocketclassprovidesthemethodsgetInputStreamandgetOutputStreamforaccessingthetwostreamsass

ociated withasocket.Thereturntypesofthese methodsareInputStreamandOutputStream, respectively–

abstractclassesthat definemethods forreading andwritingbytes.

TCPservermakesaconnection foreachclientandthenechoestheclient’srequest

importjava.net.*;

importjava.io.*;

publicclassTCPServer{

publicstaticvoidmain(Stringargs[]){

try{

intserverPort= 7896;

ServerSocketlistenSocket= newServerSocket(serverPort);

while(true){

SocketclientSocket=listenSocket.accept(); Connectionc

= newConnection(clientSocket);

}

} catch(IOExceptione){System.out.println("Listen:"+e.getMessage());}

}
}

DISTRIBUTED SYSTEMS UNIT II

8

classConnectionextendsThread{

DataInputStreamin;

DataOutputStreamout;

SocketclientSocket;

publicConnection(SocketaClientSocket){

try{

clientSocket=aClientSocket;

in=newDataInputStream(clientSocket.getInputStream());

out=newDataOutputStream(clientSocket.getOutputStream());

this.start();
}catch(IOExceptione){System.out.println("Connection:"+e.getMessage());}

}

publicvoidrun(){

try{ // anechoserver

Stringdata= in.readUTF();

out.writeUTF(data);
} catch(EOFExceptione){System.out.println("EOF:"+e.getMessage());

} catch(IOExceptione){System.out.println("IO:"+e.getMessage());
} finally{try{clientSocket.close();}catch(IOExceptione){/*closefailed*/}}

}
}

External data representation and marshalling

The information stored in running programs is represented as data structures – for example, by

sets of interconnected objects – whereas the information in messages consists of sequences of bytes.

Irrespective of the form of communication used, the data structures must be flattened (converted to a

sequence of bytes) before transmission and rebuilt on arrival. The individual primitive data items

transmitted in messages can be data values of many different types, and not all computers store

primitive values such as integers in the same order. The representation of floating-point numbers also

differs between architectures. There are two variants for the ordering of integers: the so-called big-

endian order, in which the most significant byte comes first; and little-endian order, in which it comes

last. Another issue is the set of codes used to represent characters: for example, the majority of

applications on systems such as UNIX use ASCII character Coding, taking one byte per character,

whereas the Unicode standard allows for the representation of texts in many different languages and

takes two bytes per character. One of the following methods can be used to enable any two computers

to Exchange binary data values:

• The values are converted to an agreed external format before transmission and converted to the local

form on receipt; if the two computers are known to be the same type, the conversion to external format

can be omitted.

• The values are transmitted in the sender’s format, together with an indication of the format used, and

the recipient converts the values if necessary.

DISTRIBUTED SYSTEMS UNIT II

9

Note, however, that bytes themselves are never altered during transmission. To support RMI or RPC,

any data type that can be passed as an argument or returned as a result must be able to be flattened and

the individual primitive data values represented in an agreed format. An agreed standard for the

representation of data structures and primitive values

is called an external data representation.

Marshalling is the process of taking a collection of data items and assembling them into a form

suitable for transmission in a message. Unmarshalling is the process of disassembling them on arrival

to produce an equivalent collection of data items at the destination. Thus marshalling consists of the

translation of structured data items andPrimitive values into an external data representation. Similarly,

Unmarshalling consists of the generation of primitive values from their external data representation

and the rebuilding of the data structures.

Three alternative approaches to external data representation and marshalling are discussed

• CORBA’s common data representation, which is concerned with an external representation for the

structured and primitive types that can be passed as the arguments and results of remote method

invocations in CORBA. It can be used by a variety of programming languages

• Java’s object serialization, which is concerned with the flattening and external data representation

of any single object or tree of objects that may need to be transmitted in a message or stored on a disk.

It is for use only by Java.

• XML (Extensible Markup Language), which defines a textual format for representing structured

data. It was originally intended for documents containing textual self-describing structured data – for

example documents accessible on the Web – but it is now also used to represent the data sent in

messages exchanged by clients and servers in web services.

Inthefirsttwocases,themarshallingandunmarshalling activitiesareintendedtobe

carriedoutbyamiddlewarelayerwithoutanyinvolvementonthepartoftheapplication programmer.

Inthefirsttwoapproaches,theprimitivedatatypesaremarshalledintoabinary

form.Inthethirdapproach(XML),theprimitivedatatypesarerepresented textually.

CORBA’sCommonDataRepresentation (CDR)

CORBACDRistheexternaldatarepresentationdefinedwithCORBA2.0.

Theseconsistof15primitivetypes,which includeshort(16-bit), long(32-bit),unsigned short,unsigned

long,float(32-bit), double(64-bit),char,boolean(TRUE, FALSE), octet(8-bit),andany.

Primitivetypes:CDRdefinesarepresentationforbothbig-endianandlittle-endian

orderings.Valuesaretransmittedinthesender’sordering,whichisspecifiedineach

message.Therecipienttranslatesifitrequiresadifferentordering.Forexample,a16-

bitshortoccupiestwobytesinthemessage,andforbig-endianordering,themost significantbits

occupythefirst byte and theleast significantbits occupythesecond byte.

Constructedtypes:Theprimitivevaluesthatcompriseeachconstructedtypeare addedtoa

sequenceofbytesinaparticularorder,asshownin following Figure.

CORBACDRforconstructedtypes

DISTRIBUTED SYSTEMS UNIT II

10

Type Representation

sequencelength(unsignedlong)followedbyelementsinorder

string length(unsignedlong)followedbycharactersinorder(canalso
havewidecharacters)

arrayarrayelementsinorder(nolengthspecifiedbecauseitisfixed)

structintheorderofdeclarationofthecomponents

enumeratedunsignedlong(thevaluesarespecifiedbytheorderdeclared)

uniontypetagfollowedbytheselectedmember

The following figure showsamessageinCORBA CDRthatcontains thethreefieldsofastruct

whoserespective typesarestring,stringandunsignedlong.

MarshallinginCORBA• Marshallingoperationscanbegeneratedautomaticallyfrom the specificationof the

typesof dataitemstobetransmittedina message.

Forexample, wemightuseCORBA IDL(Interface Definition language)todescribethe

datastructureinthemessageof above Figureasfollows:

structPerson{ stringname;

stringplace;
unsignedlongyear;

};

Javaobjectserialization

 InJavaRMI,bothobjectsandprimitivedatavaluesmaybepassedasarguments and

resultsofmethodinvocations.AnobjectisaninstanceofaJavaclass.Forexample,the

JavaclassequivalenttothePersonstructdefinedinCORBAIDLmightbe:

publicclassPersonimplementsSerializable{

privateStringname;

privateStringplace;

privateintyear;

publicPerson(StringaName,StringaPlace,intaYear){

DISTRIBUTED SYSTEMS UNIT II

11

name=aName;

place=aPlace; year=

aYear;

}

// followedbymethodsforaccessingtheinstancevariables
}

✓ The above class states that it implements serializable interface.

✓ In java, serialization means flattening an object or a set of objects into a serial form suitable for

storing on a disk or transmitting in a message.

✓ Deserialization is the restoring of object from serialized form.

✓ Information about class(like name, version etc.) are included in serializable form so that it is

helpful in deserialization process.

✓ Version numbers is intended to change when major changes are made to the class.(usually set

by programmer).

✓ To serialize an object, its class information is written out followed by the types and names of

its instance variables.

✓ Each class is given a handle(reference to an object within serialized form).

✓ Example, consider serialization of following object

✓ Person p=new Person(“Smith”,”London”,1934);

Extensible Markup Language (XML)

XML is a markup language that was defined by the World Wide Web Consortium(W3C) for general

use on the Web. In general, the term markup language refers to atextual encoding that represents both

a text and details as to its structure or itsappearance. Both XML and HTML were derived from SGML

(StandardizedGeneralized Markup Language) [ISO 8879], a very complex markup language.

XML data items are tagged with ‘markup’ strings. The tags are used to describethe logical structure

of the data and to associate attribute-value pairs with logicalstructures.

XML is used to enable clients to communicate with web services and for definingthe interfaces and

other properties of web services.

XML is extensible in the sense that users can define their own tags, in contrast toHTML, which uses

a fixed set of tags. However, if an XML document is intended to beused by more than one application,

then the names of the tags must be agreed betweenthem.

XML elements and attributes • The following Figure shows the XML definition of the

Personstructure that was used to illustrate marshalling in CORBA CDR and Java.

DISTRIBUTED SYSTEMS UNIT II

12

Figure XML definition of the Person structure

<person id="123456789">

<name>Smith</name>

<place>London</place>

<year>1984</year>

<!-- a comment -->

</person >

It shows thatXML consists of tags and character data. The character data, for example Smith or 1984,is

the actual data. As in HTML, the structure of an XML document is defined by pairsof tags enclosed in

angle brackets. In above Figure, <name> and <place> are both tags.

Elements: An element in XML consists of a portion of character data surrounded bymatching start and

end tags. For example, one of the elements in Figure consists ofthe data Smith contained within the

<name> ... </name> tag pair. Note that the elementwith the <name> tag is enclosed in the element

with the <person id="123456789"> ...</person > tag pair.

Attributes: A start tag may optionally include pairs of associated attribute names andvalues such as

id="123456789", as shown above as attributes. An element is generally a container for data, whereas

an attribute isused for labelling that data. In our example, 123456789 might be an identifier used bythe

application, whereas name, place and year might be displayed.

Names: The names of tags and attributes in XML generally start with a letter, but canalso start with an

underline or a colon. The names continue with letters, digits, hyphens,underscores, colons or full

stops. Letters are case-sensitive. Names that start with xmlare reserved.

Binary data: All of the information in XML elements must be expressed as characterdata.

XML namespaces • Traditionally, namespaces provide a means for scoping names. AnXML

namespace is a set of names for a collection of element types and attributes that isreferenced by a

URL. Any other XML document can use an XML namespace byreferring to its URL.

Any element that makes use of an XML namespace can specify that namespace asan attribute called

xmlns, whose value is a URL referring to the file containing thenamespace definitions. For example:

xmlns:pers = http://www.cdk5.net/person

The name after xmlns, in this case perscan be used as a prefix to refer to the elements

in a particular namespace, as shown in following Figure. The persprefix is bound

tohttp://www.cdk4.net/person for the person element.

Illustration of the use of a namespace in the Person structure

<person pers:id="123456789" xmlns:pers = "http://www.cdk5.net/person">

<pers:name> Smith </pers:name>

<pers:place> London </pers:place>

<pers:year> 1984 </pers:year>

</person>

Client-Server Communication

The client-server communication is designed to support the roles and message exchanges in typical

client-server interactions.In the normal case, request-reply communication is synchronous because the

client process blocks until the reply arrives from the server. Asynchronous request-reply communication

is an alternative that is useful where clients can afford to retrieve replies later.

The request-reply protocol

http://www.cdk5.net/person

DISTRIBUTED SYSTEMS UNIT II

13

The request-reply protocol was based on a trio of communication primitives: doOperation, getRequest,

and sendReply shown in following Figure.

The designed request-reply protocol matches requests to replies. If UDP datagrams are used, the delivery

guarantees must be provided by the request-reply protocol, which may use the server reply message as

an acknowledgement of the client request message.

The following Figureoutlines the three communication primitives.

The information to be transmitted in a request message or a reply message is shown in following Figure.

TheRequest-reply protocol message structure contains the following.

➢ The first field indicates whether the message is a request or a reply message.

➢ The second field request id contains a message identifier.

➢ The third field is a remote object reference.

➢ The fourth field is an identifier for the method to be invoked.

Message identifier

A message identifier consists of two parts:

A requestId, which is taken from an increasing sequence of integers by the sending process

An identifier for the sender process, for example its port and Internet address.

DISTRIBUTED SYSTEMS UNIT II

14

Failure model of the request-reply protocol

If the three primitive dooperation, getRequest, andsendReply are implemented over UDP datagram, they

have some communication failures. Such as,

omission failure

Messages are not guaranteed to be delivered in sender order.

RPC exchange protocols

Three protocols are used for implementing various types of RPC.

▪ The request (R) protocol.

▪ The request-reply (RR) protocol.

▪ The request-reply-acknowledge (RRA) protocol.

In the R protocol, a single request message is sent by the client to the server.

The R protocol may be used when there is no value to be returned from the remote method.

The RR protocol is useful for most client-server exchanges because it is based on request-reply

protocol. Special acknowledgement messages are not required, because a server reply message is

considered as an acknowledgement of the client’s request message.

RRA protocol is based on the exchange of three messages: request-reply-acknowledge reply. The

acknowledgement reply message contains the requested from the reply message being acknowledged.

This will enable the server to discard entries from its history.

HTTP: an example of a request-reply protocol

HTTP is a request-reply protocol for the exchange of network resources between web clients and web

servers.

HTTP protocol steps are:

▪ Connection establishment between client and server at the default server port or

at a port specified in the URL

▪ client sends a request message to the server

▪ server sends a reply message to the client

▪ connection is closed

HTTP request message is shown below.

DISTRIBUTED SYSTEMS UNIT II

15

Figure :. HTTP request message

▪ HTTP methods

➢ GET

▪ Requests the resource, identified by URL as argument.

▪ If the URL refers to data, then the web server replies by returning the data

▪ If the URL refers to a program, then the web server runs the program and returns

the output to the client.

➢ HEAD

❖ This method is similar to GET, but only meta data on resource is returned (like

date of last modification, type, and size)

➢ POST

❖ Specifies the URL of a resource (for instance, a server program) that can deal with

the data supplied with the request.

❖ This method is designed to deal with:

➢ Providing a block of data to a data-handling process

➢ Posting a message to a bulletin board, mailing list or news group.

➢ Extending a dataset with an append operation

➢ PUT

❖ Supplied data to be stored in the given URL as its identifier.

➢ DELETE

❖ The server deletes an identified resource by the given URL on the server.

➢ OPTIONS

❖ A server supplies the client with a list of methods.

❖ It allows to be applied to the given URL

➢ TRACE

❖ The server sends back the request message

HTTP reply message is shown below.

Above reply message specifies

❖ The protocol version

❖ A status code

❖ Reason

❖ Some headers

❖ An optional message body

DISTRIBUTED SYSTEMS UNIT II

16

Group Communication

The pairwise exchange of messages is not the best model for communication from one process to a

group of other processes, which may be necessary, for example, when a service is implemented as a

number of different processes in different computers, perhaps to provide fault tolerance or to enhance

availability. A multicast operation is more appropriate – this is an operation that sends a single

message from one process to each of the members of a group of processes, usually in such a way that

the membership of the group is transparent to the sender. There is a range of possibilities in the desired

Behaviour of a multicast. The simplest multicast protocol provides no guarantees about message

delivery or ordering.

Multicast messages provide a useful infrastructure for constructing distributed systems with the

following characteristics:

1.Fault tolerance based on replicated services: A replicated service consists of a group of servers.

Client requests are multicast to all the members of the group, each of which performs an identical

operation. Even when some of the members fail, clients can still be served.

2.Discovering services in spontaneous networking: Multicast messages can be used by servers and

clients to locate available discovery services in order to register their interfaces or to look up the

interfaces of other services in the distributed system.

3. Better performance through replicated data: Data are replicated to increase the performance of a

service – in some cases replicas of the data are placed in users’ computers. Each time the data

changes,the new value is multicast to the processes managing the replicas.

4. Propagation of event notifications: Multicast to a group may be used to notify processes when

something happens. For example, in Facebook, when someone changes their status, all their friends

receive notifications. Similarly, publish subscribe protocols may make use of group multicast to

disseminate events to subscribers.

IP multicast – An implementation of multicast communication

IP multicast • IP multicast is built on top of the Internet Protocol (IP). Note that IP packets are

addressed to computers – ports belong to the TCP and UDP levels. IP multicast allows the sender to

transmit a single IP packet to a set of computers that form a multicast group. The sender is unaware of

the identities of the individual recipients and of the size of the group. A multicast group is specified by

a Class D Internet address.

Being a member of a multicast group allows a computer to receive IP packets sent to the group.

The membership of multicast groups is dynamic, allowing computers to join or leave at any time and

to join an arbitrary number of groups. It is possible to send datagrams to a multicast group without

being a member.

When a multicast message arrives at a computer, copies are forwarded to all of the local

sockets that have joined the specified multicast address and are bound to the specified port number.

The following details are specific to IPv4:

DISTRIBUTED SYSTEMS UNIT II

17

Multicast routers: IP packets can be multicast both on a local network and on the wider Internet.

Local multicasts use the multicast capability of the local network, for example, of an Ethernet. Internet

multicasts make use of multicast routers, which forward single datagrams to routers on other networks,

where they are again multicast to local members. To limit the distance of propagation of a multicast

datagram, the sender can specify the number of routers it is allowed to pass – calledThetime to live, or

TTL for short.

Multicast address allocation: Class D addresses (that is,addresses in the range 224.0.0.0 to

239.255.255.255) are reserved for multicast trafficand managed globally by the Internet Assigned

Numbers Authority (IANA).

Failure model for multicast datagrams • Datagrams multicast over IP multicast have the same

failure characteristics as UDP datagrams – that is, they suffer from omission failures. The effect on a

multicast is that messages are not guaranteed to be delivered to any particular group member in the

face of even a single omission failure. That is, some but not all of the members of the group may

receive it. This can be called unreliable multicast, because it does not guarantee that a message will be

delivered to any member of a group.

Java API to IP multicast • The Java API provides a datagram interface to IP multicastthrough the

class MulticastSocket, which is a subclass of DatagramSocket with theadditional capability of being

able to join multicast groups. The class MulticastSocketprovides two alternative constructors, allowing

sockets to be created to use either aspecified local port (6789, in following figure) or any free local

port. A process can join amulticast group with a given multicast address by invoking the

joinGroup()method of itsmulticast socket. Effectively, the socket joins a multicast group at a given

port and it willreceive datagrams sent by processes on other computers to that group at that port.

Aprocess can leave a specified group by invoking the leaveGroup()method of its multicastsocket.

Figure Multicast peer joins a group and sends and receives datagrams

import java.net.*;

import java.io.*;

public class MulticastPeer{

public static void main(String args[]){

// args give message contents & destination multicast group (e.g. "228.5.6.7")

MulticastSocket s =null;

try {

InetAddress group = InetAddress.getByName(args[1]);

s = new MulticastSocket(6789);

s.joinGroup(group);

byte [] m = args[0].getBytes();

DatagramPacket messageOut = 􀀃

new DatagramPacket(m, m.length, group, 6789);

s.send(messageOut);

byte[] buffer = new byte[1000];

for(int i=0; i< 3; i++) { // get messages from others in group

DatagramPacket messageIn = 􀀃

new DatagramPacket(buffer, buffer.length);

s.receive(messageIn);

DISTRIBUTED SYSTEMS UNIT II

18

System.out.println("Received:" +new String(messageIn.getData()));

}

s.leaveGroup(group);

} catch (SocketException e){System.out.println("Socket: " + e.getMessage());

} catch (IOException e){System.out.println("IO: " + e.getMessage());

} finally { if(s != null) s.close();}

}

}

Reliability and ordering of multicast

A datagram sent from one multicast router to another may be lost, thus preventing all recipients

beyond that router from receiving the message. Also, when a multicast on a local area network uses

the multicasting capabilities of the network to allow a single datagram to arrive at multiple recipients,

any one of those recipients may drop the message because its buffer is full.

Another factor is that any process may fail. If a multicast router fails, the group members

beyond that router will not receive the multicast message, although local members may do so.

Ordering is another issue. IP packets sent over an internetwork do not necessarily arrive in the order in

which they were sent, with the possible effect that some group members receive datagrams from a

single sender in a different order from other group members. In addition, messages sent by two

different processes will not necessarily arrive in the same order at all the members of the group.

Some examples of the effects of reliability and ordering • We now consider the effect of the failure

semantics of IP multicast as follows

1. Fault tolerance based on replicated services: Consider a replicated service that consists of the

members of a group of servers that start in the same initial state and always perform the same

operations in the same order, so as to remain consistent with one another. This application of

multicast requires that either all of the replicas or none of them should receive each request to

perform an operation – if one of them misses a request, it will become inconsistent with the

others. In most cases, this service would require that all members receive request messages in

the same order as one another.

2. Discovering services in spontaneous networking: One way for a process to discover services

in spontaneous networking is to multicast requests at periodic intervals, and for the available

services to listen for those multicasts and respond. An occasional lost request is not an issue

when discovering services.

3. Better performance through replicated data: Consider the case where the replicated data

itself, rather than operations on the data, are distributed by means of multicast messages. The

effect of lost messages and inconsistent ordering would depend on the method of replication

and the importance of all replicas being totally up-to-date.

4. Propagation of event notifications: The particular application determines the qualities

required of multicast.

DISTRIBUTED SYSTEMS UNIT II

19

Some applications require a multicast protocol that is more reliable than IP multicast. In particular,

there is a need for reliable multicast, in which any message transmitted is either received by all

members of a group or by none of them. The examples also suggest that some applications have strong

requirements for ordering, the strictest of which is called totally ordered multicast, in which all of the

messages transmitted to a group reach all of the members in the same order.

