
                          HTML 

HTML is the standard markup language for creating Web pages. 

 HTML stands for Hyper Text Markup Language 

 HTML describes the structure of Web pages using markup 

 HTML elements are the building blocks of HTML pages 

 HTML elements are represented by tags 

 HTML tags label pieces of content such as "heading", "paragraph", "table", and so on 

 Browsers do not display the HTML tags, but use them to render the content of the 

page 

 

Example 

<!DOCTYPE html> 

<html> 

<head> 

<title>Page Title</title> 

</head> 

<body> 

 

<h1>My First Heading</h1> 

<p>My first paragraph.</p> 

 

</ 

body> 

</html>  

 The <!DOCTYPE html> declaration defines this document to be HTML5 

 The <html> element is the root element of an HTML page 

 The <head> element contains meta information about the document 

 The <title> element specifies a title for the document 

 The <body> element contains the visible page content 

 The <h1> element defines a large heading 

 The <p> element defines a paragraph 

 
 

  HTML tags normally come in pairs like <p> and </p> 

 The first tag in a pair is the start tag, the second tag is the end tag 

 The end tag is written like the start tag, but with a forward slash inserted before the 

tag name  

 HTML Headings 
 HTML headings are defined with the <h1> to <h6> tags. 

 <h1> defines the most important heading. <h6> defines the least important heading:  



 Example 
 <h1>This is heading 1</h1> 

<h2>This is heading 2</h2> 

<h3>This is heading 3</h3>  

  

HTML Lists 

 HTML List Example 

An Unordered List: 

 Item 
 Item 
 Item 
 Item 

An Ordered List: 

1. First item 
2. Second item 
3. Third item 
4. Fourth item 

 

Unordered HTML List 

An unordered list starts with the <ul> tag. Each list item starts with the <li> tag. 

The list items will be marked with bullets (small black circles) by default: 

Example 

<ul> 

  <li>Coffee</li> 

  <li>Tea</li> 

  <li>Milk</li> 

</ul>  

 

Unordered HTML List - Choose List Item Marker 

The CSS list-style-type property is used to define the style of the list item marker: 



Value Description 

disc Sets the list item marker to a bullet (default) 

circle Sets the list item marker to a circle 

square Sets the list item marker to a square 

none The list items will not be marked 

Example - Disc 

<ul style="list-style-type:disc"> 

  <li>Coffee</li> 

  <li>Tea</li> 

  <li>Milk</li> 

</ul>  

Example - Circle 

<ul style="list-style-type:circle"> 

  <li>Coffee</li> 

  <li>Tea</li> 

  <li>Milk</li> 

</ul>  

Example - Square 

<ul style="list-style-type:square"> 

  <li>Coffee</li> 

  <li>Tea</li> 

  <li>Milk</li> 

</ul>  

Example - None 

<ul style="list-style-type:none"> 

  <li>Coffee</li> 

  <li>Tea</li> 

  <li>Milk</li> 

</ul>  

 

 



Ordered HTML List 

An ordered list starts with the <ol> tag. Each list item starts with the <li> tag. 

The list items will be marked with numbers by default: 

Example 

<ol> 

  <li>Coffee</li> 

  <li>Tea</li> 

  <li>Milk</li> 

</ol>  

 

Ordered HTML List - The Type Attribute 

The type attribute of the <ol> tag, defines the type of the list item marker: 

Type Description 

type="1" The list items will be numbered with numbers (default) 

type="A" The list items will be numbered with uppercase letters 

type="a" The list items will be numbered with lowercase letters 

type="I" The list items will be numbered with uppercase roman numbers 

type="i" The list items will be numbered with lowercase roman numbers 

Numbers: 

<ol type="1"> 

  <li>Coffee</li> 

  <li>Tea</li> 

  <li>Milk</li> 

</ol>  

Uppercase Letters: 

<ol type="A"> 

  <li>Coffee</li> 

  <li>Tea</li> 



  <li>Milk</li> 

</ol>  

Lowercase Letters: 

<ol type="a"> 

  <li>Coffee</li> 

  <li>Tea</li> 

  <li>Milk</li> 

</ol>  

Uppercase Roman Numbers: 

<ol type="I"> 

  <li>Coffee</li> 

  <li>Tea</li> 

  <li>Milk</li> 

</ol>  

Lowercase Roman Numbers: 

<ol type="i"> 

  <li>Coffee</li> 

  <li>Tea</li> 

  <li>Milk</li> 

</ol>  

 

HTML Description Lists 

HTML also supports description lists. 

A description list is a list of terms, with a description of each term. 

The <dl> tag defines the description list, the <dt> tag defines the term (name), and the <dd> 

tag describes each term:  

Example 

<dl> 

  <dt>Coffee</dt> 

  <dd>- black hot drink</dd> 

  <dt>Milk</dt> 

  <dd>- white cold drink</dd> 

</dl>  



 

Nested HTML Lists 

List can be nested (lists inside lists): 

Example 

<ul> 

  <li>Coffee</li> 

  <li>Tea 

    <ul> 

      <li>Black tea</li> 

      <li>Green tea</li> 

    </ul> 

  </li> 

  <li>Milk</li> 

</ul>  

Note: List items can contain new list, and other HTML elements, like images and links, etc. 

 

Horizontal Lists 

HTML lists can be styled in many different ways with CSS. 

One popular way is to style a list horizontally, to create a menu: 

Example 

<!DOCTYPE html> 

<html> 

<head> 

<style> 

ul { 

    list-style-type: none; 

    margin: 0; 

    padding: 0; 

    overflow: hidden; 

    background-color: #333333; 

} 

 

li { 

    float: left; 

} 



 

li a { 

 display: block; 

    color: white; 

    text-align: center; 

    padding: 16px; 

    text-decoration: none; 

} 

 

li a:hover { 

    background-color: #111111; 

} 

</style> 

</head> 

<body> 

 

<ul> 

  <li><a href="#home">Home</a></li> 

  <li><a href="#news">News</a></li> 

  <li><a href="#contact">Contact</a></li> 

  <li><a href="#about">About</a></li> 

</ul> 

 

</body> 

</html> 

HTML Links - Hyperlinks 

HTML links are hyperlinks. 

You can click on a link and jump to another document. 

When you move the mouse over a link, the mouse arrow will turn into a little hand. 

Note: A link does not have to be text. It can be an image or any other HTML element. 

 

HTML Links - Syntax 

In HTML, links are defined with the <a> tag: 

<a href="url">link text</a>  

Example 



<a href="https://www.w3schools.com/html/">Visit our HTML tutorial</a>  

The href attribute specifies the destination address (https://www.w3schools.com/html/) of the 

link. 

The link text is the visible part (Visit our HTML tutorial). 

Clicking on the link text will send you to the specified address. 

Note: Without a forward slash on subfolder addresses, you might generate two requests to the 

server. Many servers will automatically add a forward slash to the address, and then create a 

new request. 

 

Local Links 

The example above used an absolute URL (A full web address).  

A local link (link to the same web site) is sp 

ecified with a relative URL (without http://www....). 

Example 

<a href="html_images.asp">HTML Images</a>  

HTML Table Example 

Company Contact Country 

Alfreds Futterkiste Maria Anders Germany 

Centro comercial Moctezuma Francisco Chang Mexico 

Ernst Handel Roland Mendel Austria 

Island Trading Helen Bennett UK 

Laughing Bacchus Winecellars Yoshi Tannamuri Canada 

Magazzini Alimentari Riuniti Giovanni Rovelli Italy 

 

Defining an HTML Table 

An HTML table is defined with the <table> tag. 

Each table row is defined with the <tr> tag. A table header is defined with the <th> tag. By 

default, table headings are bold and centered. A table data/cell is defined with the <td> tag. 

Example 



<table style="width:100%"> 

  <tr> 

    <th>Firstname</th> 

    <th>Lastname</th>  

    <th>Age</th> 

  </tr> 

  <tr> 

    <td>Jill</td> 

    <td>Smith</td>  

    <td>50</td> 

  </tr> 

  <tr> 

    <td>Eve</td> 

    <td>Jackson</td>  

    <td>94</td> 

  </tr> 

</table>  

Note: The <td> elements are the data containers of the table. 

They can contain all sorts of HTML elements; text, images, lists, other tables, etc. 

 

 

HTML Table - Adding a Border 

If you do not specify a border for the table, it will be displayed without borders. 

A border is set using the CSS border property: 

Example 

table, th, td { 

    border: 1px solid black; 

}  

Remember to define borders for both the table and the table cells. 

 

HTML Table - Collapsed Borders 

If you want the borders to collapse into one border, add the CSS border-collapse property: 

Example 

table, th, td { 

    border: 1px solid black; 



    border-collapse: collapse; 

}  

 

HTML Table - Adding Cell Padding 

Cell padding specifies the space between the cell content and its borders. 

If you do not specify a padding, the table cells will be displayed without padding. 

To set the padding, use the CSS padding property: 

Example 

th, td { 

    padding: 15px; 

}  

 

HTML Table - Left-align Headings 

By default, table headings are bold and centered. 

To left-align the table headings, use the CSS text-align property: 

Example 

th { 

    text-align: left; 

}  

 

HTML Table - Adding Border Spacing 

Border spacing specifies the space between the cells. 

To set the border spacing for a table, use the CSS border-spacing property: 

Example 

table { 

    border-spacing: 5px; 

}  

Note: If the table has collapsed borders, border-spacing has no effect. 

 



HTML Table - Cells that Span Many Columns 

To make a cell span more than one column, use the colspan attribute: 

Example 

<table style="width:100%"> 

  <tr> 

    <th>Name</th> 

    <th colspan="2">Telephone</th> 

  </tr> 

  <tr> 

    <td>Bill Gates</td> 

    <td>55577854</td> 

    <td>55577855</td> 

  </tr> 

</table>  

 

HTML Table - Cells that Span Many Rows 

To make a cell span more than one row, use the rowspan attribute: 

Example 

<table style="width:100%"> 

  <tr> 

    <th>Name:</th> 

    <td>Bill Gates</td> 

  </tr> 

  <tr> 

    <th rowspan="2">Telephone:</th> 

    <td>55577854</td> 

  </tr> 

  <tr> 

    <td>55577855</td> 

  </tr> 

</table>  

 

HTML Table - Adding a Caption 

To add a caption to a table, use the <caption> tag: 

Example 

<table style="width:100%"> 

  <caption>Monthly savings</caption> 



  <tr> 

    <th>Month</th> 

    <th>Savings</th> 

  </tr> 

  <tr> 

    <td>January</td> 

    <td>$100</td> 

  </tr> 

  <tr> 

    <td>February</td> 

    <td>$50</td> 

  </tr> 

</table>  

Note: The <caption> tag must be inserted immediately after the <table> tag. 

 

A Special Style for One Table 

To define a special style for a special table, add an id attribute to the table: 

Example 

<table id="t01"> 

  <tr> 

    <th>Firstname</th> 

    <th>Lastname</th>  

    <th>Age</th> 

  </tr> 

  <tr> 

    <td>Eve</td> 

    <td>Jackson</td>  

    <td>94</td> 

  </tr> 

</table>  

Now you can define a special style for this table: 

table#t01 { 

    width: 100%;  

    background-color: #f1f1c1; 

}  

And add more styles: 

table#t01 tr:nth-child(even) { 

    background-color: #eee; 

} 



table#t01 tr:nth-child(odd) { 

    background-color: #fff; 

} 

table#t01 th { 

    color: white; 

    background-color: black; 

}  

 

Summary 

 Use the HTML <table> element to define a table 

 Use the HTML <tr> element to define a table row 

 Use the HTML <td> element to define a table data 

 Use the HTML <th> element to define a table heading 

 Use the HTML <caption> element to define a table caption 

 Use the CSS border property to define a border 

 Use the CSS border-collapse property to collapse cell borders 

 Use the CSS padding property to add padding to cells 

 Use the CSS text-align property to align cell text 

 Use the CSS border-spacing property to set the spacing between cells 

 Use the colspan attribute to make a cell span many columns 

 Use the rowspan attribute to make a cell span many rows 

 Use the id attribute to uniquely define one tabl           

 

HTML Table Tags 

Tag Description 

<table>  Defines a table 

<th>  Defines a header cell in a table 

<tr>  Defines a row in a table 

<td>  Defines a cell in a table 

<caption>  Defines a table caption 

<colgroup>  Specifies a group of one or more columns in a table for formatting 

<col>  Specifies column properties for each column within a <colgroup> element 

<thead>  Groups the header content in a table 

<tbody>  Groups the body content in a table 

<tfoot>  Groups the footer content in a table 

The <form> Element 

The HTML <form> element defines a form that is used to collect user input: 

https://www.w3schools.com/tags/tag_thead.asp
https://www.w3schools.com/tags/tag_td.asp
https://www.w3schools.com/tags/tag_th.asp
https://www.w3schools.com/tags/tag_tbody.asp
https://www.w3schools.com/tags/tag_table.asp
https://www.w3schools.com/tags/tag_caption.asp
https://www.w3schools.com/tags/tag_col.asp
https://www.w3schools.com/tags/tag_tfoot.asp
https://www.w3schools.com/tags/tag_tr.asp
https://www.w3schools.com/tags/tag_colgroup.asp


<form> 

. 

form elements 

. 

</form> 

An HTML form contains form elements. 

Form elements are different types of input elements, like text fields, checkboxes, radio 

buttons, submit buttons, and more. 

 

The <input> Element 

The <input> element is the most important form element.  

The <input> element can be displayed in several ways, depending on the type attribute. 

Here are some examples: 

Type Description 

<input type="text"> Defines a one-line text input field 

<input type="radio"> Defines a radio button (for selecting one of many choices) 

<input type="submit"> Defines a submit button (for submitting the form) 

 

 

Text Input 

<input type="text"> defines a one-line input field for text input: 

Example 

<form> 

  First name:<br> 

  <input type="text" name="firstname"><br> 

  Last name:<br> 

  <input type="text" name="lastname"> 

</form>  

Input Type Text 

<input type="text"> defines a one-line text input field: 



Example 

<form> 

  First name:<br> 

  <input type="text" name="firstname"><br> 

  Last name:<br> 

  <input type="text" name="lastname"> 

</form>  

Input Type Password 

<input type="password"> defines a password field: 

Example 

<form> 

  User name:<br> 

  <input type="text" name="username"><br> 

  User password:<br> 

  <input type="password" name="psw"> 

</form>  

racters in a password field are masked (shown as asterisks or circles).  

 

 

Input Type Submit 

<input type="submit"> defines a button for submitting form data to a form-handler. 

The form-handler is typically a server page with a script for processing input data. 

The form-handler is specified in the form's action attribute: 

Example 

<form action="/action_page.php"> 

  First name:<br> 

  <input type="text" name="firstname" value="Mickey"><br> 

  Last name:<br> 

  <input type="text" name="lastname" value="Mouse"><br><br> 

  <input type="submit" value="Submit"> 

</form>  

 

If you omit the submit button's value attribute, the button will get a default text: 



Example 

<form action="/action_page.php"> 

  First name:<br> 

  <input type="text" name="firstname" value="Mickey"><br> 

  Last name:<br> 

  <input type="text" name="lastname" value="Mouse"><br><br> 

  <input type="submit"> 

</for 

m>  

The value Attribute 

The value attribute specifies the initial value for an input field: 

Example 

<form action=""> 

First name:<br> 

<input type="text" name="firstname" value="John"> 

</form>  

 
 

 HTML frames are used to divide your browser window into multiple sections where 

each section can load a separate HTML document. A collection of frames in the browser 

window is known as a frameset. The window is divided into frames in a similar way the 

tables are organized: into rows and columns. 

Disadvantages of Frames 

There are few drawbacks with using frames, so it's never recommended to use frames in your 

webpages − 

 Some smaller devices cannot cope with frames often because their screen is not big 

enough to be divided up. 

 Sometimes your page will be displayed differently on different computers due to 

different screen resolution. 

 The browser's back button might not work as the user hopes. 

 There are still few browsers that do not support frame technology. 

Creating Frames 

To use frames on a page we use <frameset> tag instead of <body> tag. The <frameset> tag 

defines, how to divide the window into frames. The rows attribute of <frameset> tag defines 

horizontal frames and cols attribute defines vertical frames. Each frame is indicated by 

<frame> tag and it defines which HTML document shall open into the frame. 



Note − The <frame> tag deprecated in HTML5. Do not use this element. 

Example 

Following is the example to create three horizontal frames − 

<!DOCTYPE html> 

<html> 

 

   <head> 

      <title>HTML Frames</title> 

   </head> 

  

   <frameset rows = "10%,80%,10%"> 

      <frame name = "top" src = "/html/top_frame.htm" /> 

      <frame name = "main" src = "/html/main_frame.htm" /> 

      <frame name = "bottom" src = "/html/bottom_frame.htm" /> 

    

      <noframes> 

         <body>Your browser does not support frames.</body> 

      </noframes> 

       

   </frameset> 

    

</html> 

Example 

Let's put the above example as follows, here we replaced rows attribute by cols and changed 

their width. This will create all the three frames vertically − 

<!DOCTYPE html> 

<html> 

    

   <head> 

      <title>HTML Frames</title> 

   </head> 

    

   <frameset cols = "25%,50%,25%"> 

      <frame name = "left" src = "/html/top_frame.htm" /> 

      <frame name = "center" src = "/html/main_frame.htm" /> 

      <frame name = "right" src = "/html/bottom_frame.htm" /> 

       

      <noframes> 

         <body>Your browser does not support frames.</body> 

      </noframes> 

   </frameset> 

    

 

</html> 

Division:- 

A section in a document that will be displayed in blue: 

<div style="color:#0000FF"> 

  <h3>This is a heading</h3> 



  <p>This is a paragraph.</p> 

</div>  

 

Definition and Usage 

The <div> tag defines a division or a section in an HTML document. 

The <div> tag is used to group block-elements to format them with CSS. 

Global Attributes 

The <div> tag also supports the Global Attributes in HTML. 

 

Event Attributes 

The <div> tag also supports the Event Attributes in HTML. 

 

https://www.w3schools.com/tags/ref_eventattributes.asp
https://www.w3schools.com/tags/ref_standardattributes.asp


What is CSS 

CSS is an acronym stands for Cascading Style Sheets. It is a style sheet language 

which is used to describe the look and formatting of a document written in markup 

language. It provides an additional feature to HTML. It is generally used with HTML to 

change the style of web pages and user interfaces. It can also be used with any kind 

of XML documents including plain XML, SVG and XUL.  

CSS is used along with HTML and JavaScript in most websites to create user 

interfaces for web applications and user interfaces for many mobile applications. 

 

What does CSS do 

o You can add new looks to your old HTML documents.  

o You can completely change the look of your website with only a few changes in 

CSS code. 

 

Why use CSS 

These are the three major benefits of CSS: 

1) Solves a big problem 

Before CSS, tags like font, color, background style, element alignments, border and 

size had to be repeated on every web page. This was a very long process. For 

example: If you are developing a large website where fonts and color information are 

added on every single page, it will be become a long and expensive process. CSS was 

created to solve this problem. It was a W3C recommendation.  

2) Saves a lot of time 

CSS style definitions are saved in external CSS files so it is possible to change the 

entire website by changing just one file.  

3) Provide more attributes 

CSS provides more detailed attributes than plain HTML to define the look and feel of 



the website.  

CSS Syntax 

A CSS rule set contains a selector and a declaration block.  

 

Selector: Selector indicates the HTML element you want to style. It could be any tag 

like <h1>, <title> etc. 

Declaration Block: The declaration block can contain one or more declarations 

separated by a semicolon. For the above example, there are two declarations: 

1. color: yellow; 

2. font-size: 11 px; 

Each declaration contains a property name and value, separated by a colon.  

Property: A Property is a type of attribute of HTML element. It could be color, 

border etc.  

Value: Values are assigned to CSS properties. In the above example, value "yellow" 

is assigned to color property.  

1. Selector{Property1: value1; Property2: value2; ..........;}   

Selector{Property1: value1; Pro

  

CSS Selector 



CSS selectors are used to select the content you want to style. Selectors are the 

part of CSS rule set. CSS selectors select HTML elements according to its id, class, 

type, attribute etc.  

There are several different types of selectors in CSS. 

1. CSS Element Selector 

2. CSS Id Selector 

3. CSS Class Selector 

4. CSS Universal Selector 

5. CSS Group Selector 

1) CSS Element Selector 

The element selector selects the HTML element by name. 

1. <!DOCTYPE html>   

2. <html>   

3. <head>   

4. <style>   

5. p{   

6.     text-align: center;   

7.     color: blue;   

8. }    

9. </style>   

10. </head>   

11. <body>   

12. <p>This style will be applied on every paragraph.</p>   

13. <p id="para1">Me too!</p>   

14. <p>And me!</p>   

15. </body>   

16. </html>     

<!DOCTYPE html>

<html>

<head>

<style>

p{

 

Test it Now  

Output: 

http://www.javatpoint.com/oprweb/test.jsp?filename=cssselector1


This style will be applied on every paragraph. 

Me too! 

And me! 

 

2) CSS Id Selector 

The id selector selects the id attribute of an HTML element to select a specific 

element. An id is always unique within the page so it is chosen to select a single, 

unique element.  

It is written with the hash character (#), followed by the id of the element. 

Let?s take an example with the id "para1". 

1. <!DOCTYPE html>   

2. <html>   

3. <head>   

4. <style>   

5. #para1 {   

6.     text-align: center;   

7.     color: blue;   

8. }   

9. </style>   

10. </head>   

11. <body>   

12. <p id="para1">Hello Javatpoint.com</p>   

13. <p>This paragraph will not be affected.</p>   

14. </body>   

15. </html>     

<!DOCTYPE html>

<html>

<head>

<style>

#para1 {

 

Test it Now  

Output: 

http://www.javatpoint.com/oprweb/test.jsp?filename=cssselector2


Hello Javatpoint.com 

This paragraph will not be affected. 

 

3) CSS Class Selector 

The class selector selects HTML elements with a specific class attribute. It is used 

with a period character . (full stop symbol) followed by the class name.  

Note: A class name should not be started with a number. 

Let's take an example with a class "center". 

1. <!DOCTYPE html>   

2. <html>   

3. <head>   

4. <style>   

5. .center {   

6.     text-align: center;   

7.     color: blue;   

8. }   

9. </style>   

10. </head>   

11. <body>   

12. <h1 class="center">This heading is blue and center-aligned.</h1>   

13. <p class="center">This paragraph is blue and center-aligned.</p>    

14. </body>   

15. </html>   

<!DOCTYPE html>

<html>

<head>

<style>

.center {

 

Test it Now  

Output: 

This heading is blue and center-aligned. 

http://www.javatpoint.com/oprweb/test.jsp?filename=cssselector3


This paragraph is blue and center-aligned. 

 

CSS Class Selector for specific element 

If you want to specify that only one specific HTML element should be affected then 

you should use the element name with class selector.  

Let's see an example. 

1. <!DOCTYPE html>   

2. <html>   

3. <head>   

4. <style>   

5. p.center {   

6.     text-align: center;   

7.     color: blue;   

8. }   

9. </style>   

10. </head>   

11. <body>   

12. <h1 class="center">This heading is not affected</h1>   

13. <p class="center">This paragraph is blue and center-aligned.</p>    

14. </body>   

15. </html>    

<!DOCTYPE html>

<html>

<head>

<style>

p.center {

 

Test it Now  

Output: 

This heading is not affected 

This paragraph is blue and center-aligned. 

 

http://www.javatpoint.com/oprweb/test.jsp?filename=cssselector32


4) CSS Universal Selector 

The universal selector is used as a wildcard character. It selects all the elements on 

the pages.  

1. <!DOCTYPE html>   

2. <html>   

3. <head>   

4. <style>   

5. * {   

6.    color: green;   

7.    font-size: 20px;   

8. }    

9. </style>   

10. </head>   

11. <body>   

12. <h2>This is heading</h2>   

13. <p>This style will be applied on every paragraph.</p>   

14. <p id="para1">Me too!</p>   

15. <p>And me!</p>   

16. </body>   

17. </html>     

<!DOCTYPE html>

<html>

<head>

<style>

* {

 

Test it Now  

Output: 

This is heading 

This style will be applied on every paragraph. 

Me too! 

And me! 

 

http://www.javatpoint.com/oprweb/test.jsp?filename=cssselector4


5) CSS Group Selector 

The grouping selector is used to select all the elements with the same style 

definitions.  

Grouping selector is used to minimize the code. Commas are used to separate each 

selector in grouping. 

Let's see the CSS code without group selector. 

1. h1 {   

2.     text-align: center;   

3.     color: blue;   

4. }   

5. h2 {   

6.     text-align: center;   

7.     color: blue;   

8. }   

9. p {   

10.     text-align: center;   

11.     color: blue;   

12. }   

h1 {

    text-align: center;

    color: blue;

}

h2 {

 

As you can see, you need to define CSS properties for all the elements. It can be 

grouped in following ways: 

1. h1,h2,p {   

2.     text-align: center;   

3.     color: blue;   

4. }   

h1,h2,p {

    text-align: center;

    color: blue;

}

 

Let's see the full example of CSS group selector. 



1. <!DOCTYPE html>   

2. <html>   

3. <head>   

4. <style>   

5. h1, h2, p {   

6.     text-align: center;   

7.     color: blue;   

8. }   

9. </style>   

10. </head>   

11. <body>   

12. <h1>Hello Javatpoint.com</h1>   

13. <h2>Hello Javatpoint.com (In smaller font)</h2>   

14. <p>This is a paragraph.</p>   

15. </body>   

16. </html>   

<!DOCTYPE html>

<html>

<head>

<style>

h1, h2, p {

 

Test it Now  

Output: 

Hello Javatpoint.com 

Hello Javatpoint.com (In smaller font) 

This is a paragraph. 

How to add CSS 

CSS is added to HTML pages to format the document according to information in 

the style sheet. There are three ways to insert CSS in HTML documents.  

1. Inline CSS 

2. Internal CSS 

3. External CSS 

http://www.javatpoint.com/oprweb/test.jsp?filename=cssselector5


 

1) Inline CSS 

Inline CSS is used to apply CSS on a single line or element. 

For example: 

1. <p style="color:blue">Hello CSS</p>   

<p style="color:blue">Hello CSS

 

For more visit here: Inline CSS  

 

2) Internal CSS 

Internal CSS is used to apply CSS on a single document or page. It can affect all 

the elements of the page. It is written inside the style tag within head section of 

html. 

For example: 

1. <style>   

2. p{color:blue}   

3. </style>   

<style>

p{color:blue}

</style>

 

For more visit here: Internal CSS  

 

3) External CSS 

External CSS is used to apply CSS on multiple pages or all pages. Here, we write 

https://www.javatpoint.com/inline-css
https://www.javatpoint.com/internal-css


all the CSS code in a css file. Its extension must be .css for example style.css. 

For example: 

1. p{color:blue}   

p{color:blue}

 

You need to link this style.css file to your html pages like this: 

1. <link rel="stylesheet" type="text/css" href="style.css">   

<link rel="stylesheet" type="text

 

The link tag must be used inside head section of html. 

Inline CSS 

We can apply CSS in a single element by inline CSS technique. 

The inline CSS is also a method to insert style sheets in HTML document. This 

method mitigates some advantages of style sheets so it is advised to use this 

method sparingly. 

If you want to use inline CSS, you should use the style attribute to the relevant 

tag.  

Syntax: 

1. <htmltag style="cssproperty1:value; cssproperty2:value;"> </htmltag>     

<htmltag style="cssproperty1:va

 

Example: 



1. <h2 style="color:red;margin-

left:40px;">Inline CSS is applied on this heading.</h2>   

2. <p>This paragraph is not affected.</p>   

<h2 style="color:red;margin-left

<p>This paragraph is not affect

 

Test it Now  

Output: 

Inline CSS is applied on this heading. 

This paragraph is not affected. 

 

Disadvantages of Inline CSS 

o You cannot use quotations within inline CSS. If you use quotations the 

browser will interpret this as an end of your style value.  

o These styles cannot be reused anywhere else. 

o These styles are tough to be edited because they are not stored at a single 

place. 

o It is not possible to style pseudo-codes and pseudo-classes with inline CSS.  

o Inline CSS does not provide browser cache advantages.  

Internal CSS 

The internal style sheet is used to add a unique style for a single document. It is 

defined in <head> section of the HTML page inside the <style> tag. 

Example: 

1. <!DOCTYPE html>   

2. <html>   

3. <head>   

4. <style>   

http://www.javatpoint.com/oprweb/test.jsp?filename=cssinline1


5. body {   

6.     background-color: linen;   

7. }   

8. h1 {   

9.     color: red;   

10.     margin-left: 80px;   

11. }    

12. </style>   

13. </head>   

14. <body>   

15. <h1>The internal style sheet is applied on this heading.</h1>   

16. <p>This paragraph will not be affected.</p>   

17. </body>   

18. </html>   

<!DOCTYPE html>

<html>

<head>

<style>

body {

 

 

External CSS 

The external style sheet is generally used when you want to make changes on 

multiple pages. It is ideal for this condition because it facilitates you to change 

the look of the entire web site by changing just one file.  

It uses the <link> tag on every pages and the <link> tag should be put inside 

the head section.  

Example: 

1. <head>   

2. <link rel="stylesheet" type="text/css" href="mystyle.css">   

3. </head>   

<head>

<link rel="stylesheet" type="text

</head>

 



The external style sheet may be written in any text editor but must be saved with 

a .css extension. This file should not contain HTML elements.  

Let's take an example of a style sheet file named "mystyle.css". 

File: mystyle.css 

1. body {   

2.     background-color: lightblue;   

3. }   

4. h1 {   

5.     color: navy;   

6.     margin-left: 20px;   

7. }    

body {

    background-color: lightblue;

}

h1 {

    color: navy;

 

Note: You should not use a space between the property value and the unit. For 

example: It should be margin-left:20px not margin-left:20 px. 

CSS Font 

CSS Font property is used to control the look of texts. By the use of CSS font 

property you can change the text size, color, style and more. You have already 

studied how to make text bold or underlined. Here, you will also know how to 

resize your font using percentage.  

These are some important font attributes: 

1. CSS Font color: This property is used to change the color of the text. 

(standalone attribute) 

2. CSS Font family: This property is used to change the face of the font. 

3. CSS Font size: This property is used to increase or decrease the size of 

the font. 

4. CSS Font style: This property is used to make the font bold, italic or 

oblique. 



5. CSS Font variant: This property creates a small-caps effect. 

6. CSS Font weight: This property is used to increase or decrease the 

boldness and lightness of the font.  

 

1) CSS Font Color 

CSS font color is a standalone attribute in CSS although it seems that it is a part 

of CSS fonts. It is used to change the color of the text.  

There are three different formats to define a color:  

o By a color name 

o By hexadecimal value 

o By RGB 

In the above example, we have defined all these formats. 

1. <!DOCTYPE html>   

2. <html>   

3. <head>   

4. <style>   

5. body {   

6.     font-size: 100%;   

7. }   

8. h1 { color: red; }   

9. h2 { color: #9000A1; }    

10. p { color:rgb(0, 220, 98); }    

11. }   

12. </style>   

13. </head>   

14. <body>   

15. <h1>This is heading 1</h1>   

16. <h2>This is heading 2</h2>   

17. <p>This is a paragraph.</p>   

18. </body>   

19. </html>   



<!DOCTYPE html>

<html>

<head>

<style>

body {

 

Test it Now  

Output: 

This is heading 1 

This is heading 2 

This is a paragraph. 

 

2) CSS Font Family 

CSS font family can be divided in two types: 

o Generic family: It includes Serif, Sans-serif, and Monospace.  

o Font family: It specifies the font family name like Arial, New Times 

Roman etc.  

Serif: Serif fonts include small lines at the end of characters. Example of serif: 

Times new roman, Georgia etc. 

Sans-serif: A sans-serif font doesn't include the small lines at the end of 

characters. Example of Sans-serif: Arial, Verdana etc. 

 

1. <!DOCTYPE html>   

2. <html>   

http://www.javatpoint.com/oprweb/test.jsp?filename=cssfont1


3. <head>   

4. <style>   

5. body {   

6. font-size: 100%;   

7. }   

8. h1 { font-family: sans-serif; }   

9. h2 { font-family: serif; }    

10. p { font-family: monospace; }    

11. }   

12. </style>   

13. </head>   

14. <body>   

15. <h1>This heading is shown in sans-serif.</h1>   

16. <h2>This heading is shown in serif.</h2>   

17. <p>This paragraph is written in monospace.</p>   

18. </body>   

19. </html>   

<!DOCTYPE html>

<html>

<head>

<style>

body {

 

Test it Now  

Output: 

This heading is shown in sans-serif. 

This heading is shown in serif. 

This paragraph is written in monospace. 

 

3) CSS Font Size 

CSS font size property is used to change the size of the font.  

These are the possible values that can be used to set the font size: 

http://www.javatpoint.com/oprweb/test.jsp?filename=cssfont2


Font Size Value Description 

xx-small used to display the extremely small text size. 

x-small used to display the extra small text size. 

small used to display small text size. 

medium used to display medium text size. 

large used to display large text size. 

x-large used to display extra large text size. 

xx-large used to display extremely large text size. 

smaller used to display comparatively smaller text size.  

larger used to display comparatively larger text size.  

size in pixels or % used to set value in percentage or in pixels.  

1. <html>   

2. <head>   

3. <title>Practice CSS font-size property</title>   

4. </head>   

5. <body>   

6. <p style="font-size:xx-small;">  This font size is extremely small.</p>     

7. <p style="font-size:x-small;">  This font size is extra small</p>     

8. <p style="font-size:small;">  This font size is small</p>     

9. <p style="font-size:medium;">  This font size is medium. </p>     

10. <p style="font-size:large;">  This font size is large. </p>     

11. <p style="font-size:x-large;">  This font size is extra large. </p>     

12. <p style="font-size:xx-large;">  This font size is extremely large. </p>     

13. <p style="font-size:smaller;">  This font size is smaller. </p>     

14. <p style="font-size:larger;">  This font size is larger. </p>     



15. <p style="font-size:200%;">  This font size is set on 200%. </p>     

16. <p style="font-size:20px;">  This font size is 20 pixels.  </p>     

17. </body>   

18. </html>   

<html>

<head>

<title>Practice CSS font-size pro

</head>

<body>

 

Test it Now  

Output: 

This font size is extremely small. 

This font size is extra small 

This font size is small 

This font size is medium.  

This font size is large.  

This font size is extra large.  

This font size is 

extremely large.  
This font size is smaller.  

This font size is larger.  

This font size is set on 200%.  

This font size is 20 pixels.  

 

http://www.javatpoint.com/oprweb/test.jsp?filename=cssfont3


4) CSS Font Style 

CSS Font style property defines what type of font you want to display. It may be 

italic, oblique, or normal.  

1. <!DOCTYPE html>   

2. <html>   

3. <head>   

4. <style>   

5. body {   

6. font-size: 100%;   

7. }   

8. h2 { font-style: italic; }   

9. h3 { font-style: oblique; }   

10. h4 { font-style: normal; }    

11. }   

12. </style>   

13. </head>   

14. <body>   

15. <h2>This heading is shown in italic font.</h2>   

16. <h3>This heading is shown in oblique font.</h3>   

17. <h4>This heading is shown in normal font.</h4>   

18. </body>   

19. </html>   

<!DOCTYPE html>

<html>

<head>

<style>

body {

 

Test it Now  

Output: 

This heading is shown in italic font. 

This heading is shown in oblique font. 

This heading is shown in normal font. 

 

http://www.javatpoint.com/oprweb/test.jsp?filename=cssfont4


5) CSS Font Variant 

CSS font variant property specifies how to set font variant of an element. It may 

be normal and small-caps. 

1. <!DOCTYPE html>   

2. <html>   

3. <head>   

4. <style>   

5. p { font-variant: small-caps; }   

6. h3 { font-variant: normal; }   

7. </style>   

8. </head>   

9. <body>   

10. <h3>This heading is shown in normal font.</h3>   

11. <p>This paragraph is shown in small font.</p>   

12. </body>   

13. </html>   

<!DOCTYPE html>

<html>

<head>

<style>

p { font-variant: small-caps; }

 

Test it Now  

Output: 

This heading is shown in normal font. 

THIS PARAGRAPH IS SHOWN IN SMALL FONT. 

 

6) CSS Font Weight 

CSS font weight property defines the weight of the font and specify that how 

bold a font is. The possible values of font weight may be normal, bold, bolder, 

lighter or number (100, 200..... upto 900). 

1. <!DOCTYPE html>   

http://www.javatpoint.com/oprweb/test.jsp?filename=cssfont5


2. <html>   

3. <body>   

4. <p style="font-weight:bold;">This font is bold.</p>   

5. <p style="font-weight:bolder;">This font is bolder.</p>   

6. <p style="font-weight:lighter;">This font is lighter.</p>   

7. <p style="font-weight:100;">This font is 100 weight.</p>   

8. <p style="font-weight:200;">This font is 200 weight.</p>   

9. <p style="font-weight:300;">This font is 300 weight.</p>   

10. <p style="font-weight:400;">This font is 400 weight.</p>   

11. <p style="font-weight:500;">This font is 500 weight.</p>   

12. <p style="font-weight:600;">This font is 600 weight.</p>   

13. <p style="font-weight:700;">This font is 700 weight.</p>   

14. <p style="font-weight:800;">This font is 800 weight.</p>   

15. <p style="font-weight:900;">This font is 900 weight.</p>   

16. </body>   

17. </html>   

<!DOCTYPE html>

<html>

<body>

<p style="font-w eight:bold;">Th

<p style="font-w eight:bolder;">T

 

Test it Now  

Output: 

This font is bold. 

This font is bolder. 

This font is lighter. 

This font is 100 weight. 

This font is 200 weight. 

This font is 300 weight. 

This font is 400 weight. 

This font is 500 weight. 

http://www.javatpoint.com/oprweb/test.jsp?filename=cssfont6


This font is 600 weight. 

This font is 700 weight. 

This font is 800 weight. 

This font is 900 weight. 

 

 

 

 

 

 

 

 

 

                                  Java script 

                       JavaScript is an object-based scripting language that is 

lightweight and cross-platform. 

JavaScript is not compiled but translated. The JavaScript Translator (embedded 

in browser) is responsible to translate the JavaScript code. 

Where JavaScript is used 

JavaScript is used to create interactive websites. It is mainly used for: 

o Client-side validation 

o Dynamic drop-down menus 

o Displaying data and time 



o Displaying popup windows and dialog boxes (like alert dialog box, 

confirm dialog box and prompt dialog box) 

Displaying clocks etc. 

JavaScript Example 

1. <h2>Welcome to JavaScript</h2>   

2. <script>   

3. document.write("Hello JavaScript by JavaScript");   

</script>   

JavaScript Example 

1. JavaScript Example 

2. Within body tag 

3. Within head tag 

Javascript example is easy to code. JavaScript provides 3 places to put the 

JavaScript code: within body tag, within head tag and external JavaScript file. 

Let’s create the first JavaScript example. 

1. <script type="text/javascript">   

2. document.write("JavaScript is a simple language for javatpoint learners");   

3. </script>   

<script type="text/javascript">

document.w rite("JavaScript is a

</script>

 

Test it Now  

The script tag specifies that we are using JavaScript. 

The text/javascript is the content type that provides information to the 

browser about the data. 

The document.write() function is used to display dynamic content through 

https://www.javatpoint.com/javascript-example
http://www.javatpoint.com/oprweb/test.jsp?filename=example1js
https://www.javatpoint.com/javascript-example
https://www.javatpoint.com/javascript-example


JavaScript. We will learn about document object in detail later. 

 

3 Places to put JavaScript code 

1. Between the body tag of html 

2. Between the head tag of html 

3. In .js file (external javaScript) 

 

1) JavaScript Example : code between the body 
tag 

In the above example, we have displayed the dynamic content using JavaScript. 

Let’s see the simple example of JavaScript that displays alert dialog box. 

1. <script type="text/javascript">   

2.  alert("Hello Javatpoint");   

3. </script>   

<script type="text/javascript">

 alert("Hello Javatpoint");

</script>

 

Test it Now  

 

2) JavaScript Example : code between the head 
tag 

Let’s see the same example of displaying alert dialog box of JavaScript that is 

contained inside the head tag. 

In this example, we are creating a function msg(). To create function in 

JavaScript, you need to write function with function_name as given below. 

To call function, you need to work on event. Here we are using onclick event to 

http://www.javatpoint.com/oprweb/test.jsp?filename=example2js


call msg() function. 

1. <html>   

2. <head>   

3. <script type="text/javascript">   

4. function msg(){   

5.  alert("Hello Javatpoint");   

6. }   

7. </script>   

8. </head>   

9. <body>   

10. <p>Welcome to JavaScript</p>   

11. <form>   

12. <input type="button" value="click" onclick="msg()"/>   

13. </form>   

14. </body>   

15. </html>   

<html>

<head>

<script type="text/javascript">

function msg(){

 alert("Hello Javatpoint");

 

External JavaScript file 

We can create external JavaScript file and embed it in many html page.  

It provides code re usability because single JavaScript file can be used in 

several html pages. 

An external JavaScript file must be saved by .js extension. It is recommended to 

embed all JavaScript files into a single file. It increases the speed of the 

webpage. 

 

Let’s create an external JavaScript file that prints Hello Javatpoint in a alert 

dialog box. 

message.js 



1. function msg(){   

2.  alert("Hello Javatpoint");   

3. }   

function msg(){

 alert("Hello Javatpoint");

}

 

 

Let’s include the JavaScript file into html page. It calls the JavaScript function on 

button click. 

index.html 

1. <html>   

2. <head>   

3. <script type="text/javascript" src="message.js"></script>   

4. </head>   

5. <body>   

6. <p>Welcome to JavaScript</p>   

7. <form>   

8. <input type="button" value="click" onclick="msg()"/>   

9. </form>   

10. </body>   

11. </html>   

<html>

<head>

<script type="text/javascript" sr

</head>

<body>

 

Document Object Model  

1. Document Object 

2. Properties of document object 

3. Methods of document object 

4. Example of document object 

The document object represents the whole html document. 

https://www.javatpoint.com/document-object-model
https://www.javatpoint.com/document-object-model
https://www.javatpoint.com/document-object-model
https://www.javatpoint.com/document-object-model


When html document is loaded in the browser, it becomes a document object. 

It is the root element that represents the html document. It has properties 

and methods. By the help of document object, we can add dynamic content to 

our web page. 

As mentioned earlier, it is the object of window. So  

1. window.document   

w indow .document

 

Is same as 

1. document   

document

 

According to W3C - "The W3C Document Object Model (DOM) is a platform and 

language-neutral interface that allows programs and scripts to dynamically 

access and update the content, structure, and style of a document." 

 

Properties of document object 

Let's see the properties of document object that can be accessed and modified 

by the document object. 



 

 

Methods of document object 

We can access and change the contents of document by its methods. 

The important methods of document object are as follows: 

Method Description 

write("string") writes the given string on the doucment. 

writeln("string") writes the given string on the doucment 

with newline character at the end. 



getElementById() returns the element having the given id 

value. 

getElementsByName() returns all the elements having the given 

name value. 

getElementsByTagName() returns all the elements having the given 

tag name. 

getElementsByClassName() returns all the elements having the given 

class name. 

 

Accessing field value by document object 

In this example, we are going to get the value of input text by user. Here, we 

are using document.form1.name.value to get the value of name field. 

Here, document is the root element that represents the html document. 

form1 is the name of the form. 

name is the attribute name of the input text. 

value is the property, that returns the value of the input text. 

Let's see the simple example of document object that prints name with 

welcome message. 

1. <script type="text/javascript">   

2. function printvalue(){   

3. var name=document.form1.name.value;   

4. alert("Welcome: "+name);   

5. }   

6. </script>   

7.    

8. <form name="form1">   

9. Enter Name:<input type="text" name="name"/>   



10. <input type="button" onclick="printvalue()" value="print name"/>   

11. </form>   

<script type="text/javascript">

function printvalue(){

var name=document.form1.nam

alert("Welcome: "+name);

}

 

 

Output of the above example 

 

Enter Name:   

Javascript - document.getElementById() 
method 

1. getElementById() method 

2. Example of getElementById() 

The document.getElementById() method returns the element of specified 

id. 

In the previous page, we have used document.form1.name.value to get the 

value of the input value. Instead of this, we can use 

document.getElementById() method to get value of the input text. But we 

need to define id for the input field. 

Let's see the simple example of document.getElementById() method that 

prints cube of the given number. 

1. <script type="text/javascript">   

2. function getcube(){   

3. var number=document.getElementById("number").value;   

4. alert(number*number*number);   

5. }   

6. </script>   

7. <form>   

8. Enter No:<input type="text" id="number" name="number"/><br/>   

https://www.javatpoint.com/document-getElementById()-method
https://www.javatpoint.com/document-getElementById()-method


9. <input type="button" value="cube" onclick="getcube()"/>   

10. </form>   

<script type="text/javascript">

function getcube(){

var number=document.getEleme

alert(number*number*number);

}

 

 

Output of the above example 

 

Enter No:  

 

Javascript - 
document.getElementsByName() method 

1. getElementsByName() method 

2. Example of getElementsByName() 

The document.getElementsByName() method returns all the element of 

specified name. 

The syntax of the getElementsByName() method is given below: 

1. document.getElementsByName("name")   

document.getElementsByName(

 

Here, name is required. 

Example of document.getElementsByName() 

method 

In this example, we going to count total number of genders. Here, we are 

using getElementsByName() method to get all the genders. 

https://www.javatpoint.com/document-getElementsByName()-method
https://www.javatpoint.com/document-getElementsByName()-method


1. <script type="text/javascript">   

2. function totalelements()   

3. {   

4. var allgenders=document.getElementsByName("gender");   

5. alert("Total Genders:"+allgenders.length);   

6. }   

7. </script>   

8. <form>   

9. Male:<input type="radio" name="gender" value="male">   

10. Female:<input type="radio" name="gender" value="female">   

11.    

12. <input type="button" onclick="totalelements()" value="Total Genders">   

13. </form>   

<script type="text/javascript">

function totalelements()

{

var allgenders=document.getEle

alert("Total Genders:"+allgender

 

 

Output of the above example 

 

Male:  Female:   

Bottom of FoJavascript - 
document.getElementsByTagName() 
method 

1. getElementsByTagName() method 

2. Example of getElementsByTagName() 

The document.getElementsByTagName() method returns all the element 

of specified tag name. 

The syntax of the getElementsByTagName() method is given below: 

1. document.getElementsByTagName("name")   

https://www.javatpoint.com/document-getElementsByTagName()-method
https://www.javatpoint.com/document-getElementsByTagName()-method


document.getElementsByTagNa

 

Here, name is required. 

Example of document.getElementsByTagName() 

method 

In this example, we going to count total number of paragraphs used in the 

document. To do this, we have called the 

document.getElementsByTagName("p") method that returns the total 

paragraphs. 

1. <script type="text/javascript">   

2. function countpara(){   

3. var totalpara=document.getElementsByTagName("p");   

4. alert("total p tags are: "+totalpara.length);   

5.    

6. }   

7. </script>   

8. <p>This is a pragraph</p>   

9. <p>Here we are going to count total number of paragraphs by getElementByT

agName() method.</p>   

10. <p>Let's see the simple example</p>   

11. <button onclick="countpara()">count paragraph</button>   

<script type="text/javascript">

function countpara(){

var totalpara=document.getElem

alert("total p tags are: "+totalpar

 

 

Output of the above example 

This is a pragraph 

Here we are going to count total number of paragraphs by 

getElementByTagName() method. 



Let's see the simple example 

count paragraph  

Another example of 

document.getElementsByTagName() 

method 

In this example, we going to count total number of h2 and h3 tags used in the 

document. 

1. <script type="text/javascript">   

2. function counth2(){   

3. var totalh2=document.getElementsByTagName("h2");   

4. alert("total h2 tags are: "+totalh2.length);   

5. }   

6. function counth3(){   

7. var totalh3=document.getElementsByTagName("h3");   

8. alert("total h3 tags are: "+totalh3.length);   

9. }   

10. </script>   

11. <h2>This is h2 tag</h2>   

12. <h2>This is h2 tag</h2>   

13. <h3>This is h3 tag</h3>   

14. <h3>This is h3 tag</h3>   

15. <h3>This is h3 tag</h3>   

16. <button onclick="counth2()">count h2</button>   

17. <button onclick="counth3()">count h3</button>   

<script type="text/javascript">

function counth2(){

var totalh2=document.getElemen

alert("total h2 tags are: "+totalh2

}

 

 

Output of the above example 

This is h2 tag 



This is h2 tag 

This is h3 tag 

This is h3 tag 

This is h3 tag 

count h2 count h3  

Note: Output of the given examples may differ on this page because it will count the 

total number of para , total number of h2 and total number of h3 tags used in this 

document  

Javascript - innerHTML 

1. javascript innerHTML 

2. Example of innerHTML property 

The innerHTML property can be used to write the dynamic html on the html 

document. 

It is used mostly in the web pages to generate the dynamic html such as 

registration form, comment form, links etc. 

Example of innerHTML property 

In this example, we are going to create the html form when user clicks on the 

button. 

In this example, we are dynamically writing the html form inside the div name 

having the id mylocation. We are identifing this position by calling the 

document.getElementById() method. 

1. <script type="text/javascript" >   

2. function showcommentform() {   

3. var data="Name:<input type='text' name='name'><br>Comment:<br><te

xtarea rows='5' cols='80'></textarea>   

4. <br><input type='submit' value='Post Comment'>";   

5. document.getElementById('mylocation').innerHTML=data;   

6. }   

https://www.javatpoint.com/javascript-innerHTML
https://www.javatpoint.com/javascript-innerHTML


7. </script>   

8. <form name="myForm">   

9. <input type="button" value="comment" onclick="showcommentform()">   

10. <div id="mylocation"></div>   

11. </form>   

<script type="text/javascript" >

function show commentform() {

var data="Name:<input type='tex

<br><input type='submit' value=

document.getElementById('mylo

 

Test it Now  

 

Output of the above example 

 

 

 

 

Show/Hide Comment Form Example using 

innerHTML 
1. <!DOCTYPE html>   

2. <html>   

3. <head>   

4. <title>First JS</title>   

5. <script>   

6. var flag=true;   

7. function commentform(){   

8. var cform="<form action='Comment'>Enter Name:<br><input type='text' 

name='name'/><br/>   

9. Enter Email:<br><input type='email' name='email'/><br>Enter Comment:

<br/>   

10. <textarea rows='5' cols='70'></textarea><br><input type='submit' valu

e='Post Comment'/></form>";   

11. if(flag){   

12. document.getElementById("mylocation").innerHTML=cform;   

13. flag=false;   

14. }else{   

http://www.javatpoint.com/oprweb/test.jsp?filename=jsinnerhtml


15. document.getElementById("mylocation").innerHTML="";   

16. flag=true;   

17. }   

18. }   

19. </script>   

20. </head>   

21. <body>   

22. <button onclick="commentform()">Comment</button>   

23. <div id="mylocation"></div>   

24. </body>   

25. </html>   

<!DOCTYPE html>

<html>

<head>

<title>First JS</title>

<script>

 

Javascript - innerText 

1. javascript innerText 

2. Example of innerText property 

The innerText property can be used to write the dynamic text on the html 

document. Here, text will not be interpreted as html text but a normal text. 

It is used mostly in the web pages to generate the dynamic content such as 

writing the validation message, password strength etc. 

Javascript innerText Example 

In this example, we are going to display the password strength when releases 

the key after press. 

1. <script type="text/javascript" >   

2. function validate() {   

3. var msg;   

4. if(document.myForm.userPass.value.length>5){   

5. msg="good";   

6. }   

7. else{   

https://www.javatpoint.com/javascript-innerText
https://www.javatpoint.com/javascript-innerText


8. msg="poor";   

9. }   

10. document.getElementById('mylocation').innerText=msg;   

11.  }   

12.    

13. </script>   

14. <form name="myForm">   

15. <input type="password" value="" name="userPass" onkeyup="validate()">   

16. Strength:<span id="mylocation">no strength</span>   

17. </form>   

<script type="text/javascript" >

function validate() {

var msg;

if(document.myForm.userPass.v

msg="good";

 

Test it Now  

 

Output of the above example 

 

Strength:no strength  

JavaScript Form Validation 

1. JavaScript form validation 

2. Example of JavaScript validation 

3. JavaScript email validation 

It is important to validate the form submitted by the user because it can have 

inappropriate values. So validation is must. 

The JavaScript provides you the facility the validate the form on the client side 

so processing will be fast than server-side validation. So, most of the web 

developers prefer JavaScript form validation. 

Through JavaScript, we can validate name, password, email, date, mobile 

number etc fields. 

https://www.javatpoint.com/javascript-form-validation
http://www.javatpoint.com/oprweb/test.jsp?filename=jsinnertext
https://www.javatpoint.com/javascript-form-validation
https://www.javatpoint.com/javascript-form-validation#email


 

JavaScript form validation example 

In this example, we are going to validate the name and password. The name 

can’t be empty and password can’t be less than 6 characters long. 

Here, we are validating the form on form submit. The user will not be 

forwarded to the next page until given values are correct. 

1. <script>   

2. function validateform(){   

3. var name=document.myform.name.value;   

4. var password=document.myform.password.value;   

5.    

6. if (name==null || name==""){   

7.   alert("Name can't be blank");   

8.   return false;   

9. }else if(password.length<6){   

10.   alert("Password must be at least 6 characters long.");   

11.   return false;   

12.   }   

13. }   

14. </script>   

15. <body>   

16. <form name="myform" method="post" action="abc.jsp" onsubmit="return v

alidateform()" >   

17. Name: <input type="text" name="name"><br/>   

18. Password: <input type="password" name="password"><br/>   

19. <input type="submit" value="register">   

20. </form>   

<script>

function validateform(){

var name=document.myform.na

var passw ord=document.myfor

 

Test it Now  

 

http://www.javatpoint.com/oprweb/test.jsp?filename=jsvalidation1


JavaScript Retype Password Validation 

1. <script type="text/javascript">   

2. function matchpass(){   

3. var firstpassword=document.f1.password.value;   

4. var secondpassword=document.f1.password2.value;   

5.    

6. if(firstpassword==secondpassword){   

7. return true;   

8. }   

9. else{   

10. alert("password must be same!");   

11. return false;   

12. }   

13. }   

14. </script>   

15.    

16. <form name="f1" action="register.jsp" onsubmit="return matchpass()">   

17. Password:<input type="password" name="password" /><br/>   

18. Re-enter Password:<input type="password" name="password2"/><br/>   

19. <input type="submit">   

20. </form>   

<script type="text/javascript">

function matchpass(){

var firstpassw ord=document.f1

var secondpassw ord=documen

 

Test it Now  

 

JavaScript Number Validation 

Let's validate the textfield for numeric value only. Here, we are using isNaN() 

function. 

1. <script>   

2. function validate(){   

3. var num=document.myform.num.value;   

http://www.javatpoint.com/oprweb/test.jsp?filename=jsvalidation4


4. if (isNaN(num)){   

5.   document.getElementById("numloc").innerHTML="Enter Numeric value only"

;   

6.   return false;   

7. }else{   

8.   return true;   

9.   }   

10. }   

11. </script>   

12. <form name="myform" onsubmit="return validate()" >   

13. Number: <input type="text" name="num"><span id="numloc"></span><

br/>   

14. <input type="submit" value="submit">   

15. </form>   

<script>

function validate(){

var num=document.myform.num

if (isNaN(num)){

  document.getElementById("num

 

Test it Now  

 

JavaScript validation with image 

Let’s see an interactive JavaScript form validation example that displays 

correct and incorrect image if input is correct or incorrect. 

1. <script>   

2. function validate(){   

3. var name=document.f1.name.value;   

4. var password=document.f1.password.value;   

5. var status=false;   

6.    

7. if(name.length<1){   

8. document.getElementById("nameloc").innerHTML=   

9. " <img src='unchecked.gif'/> Please enter your name";   

10. status=false;   

11. }else{   

12. document.getElementById("nameloc").innerHTML=" <img src='checked.gif'/>

http://www.javatpoint.com/oprweb/test.jsp?filename=jsvalidation5


";   

13. status=true;   

14. }   

15. if(password.length<6){   

16. document.getElementById("passwordloc").innerHTML=   

17. " <img src='unchecked.gif'/> Password must be at least 6 char long";   

18. status=false;   

19. }else{   

20. document.getElementById("passwordloc").innerHTML=" <img src='checked.gi

f'/>";   

21. }   

22. return status;   

23. }   

24. </script>   

25.    

26. <form name="f1" action="#" onsubmit="return validate()">   

27. <table>   

28. <tr><td>Enter Name:</td><td><input type="text" name="name"/>   

29. <span id="nameloc"></span></td></tr>   

30. <tr><td>Enter Password:</td><td><input type="password" name="pass

word"/>   

31. <span id="passwordloc"></span></td></tr>   

32. <tr><td colspan="2"><input type="submit" value="register"/></td></tr

>   

33. </table>   

34. </form>   

<script>

function validate(){

var name=document.f1.name.va

var passw ord=document.f1.pas

var status=false;

 

Test it Now  

Output: 

 

Enter Name:  

Enter Password:  

http://www.javatpoint.com/oprweb/test.jsp?filename=jsvalidation2


register
 

 

JavaScript email validation 

We can validate the email by the help of JavaScript. 

There are many criteria that need to be follow to validate the email id such as: 

o email id must contain the @ and . character 

o There must be at least one character before and after the @. 

o There must be at least two characters after . (dot). 

Let's see the simple example to validate the email field. 

1. <script>   

2. function validateemail()   

3. {   

4. var x=document.myform.email.value;   

5. var atposition=x.indexOf("@");   

6. var dotposition=x.lastIndexOf(".");   

7. if (atposition<1 || dotposition<atposition+2 || dotposition+2>=x.length){   

8.   alert("Please enter a valid e-

mail address \n atpostion:"+atposition+"\n dotposition:"+dotposition);   

9.   return false;   

10.   }   

11. }   

12. </script>   

13. <body>   

14. <form name="myform"  method="post" action="#" onsubmit="return validat

eemail();">   

15. Email: <input type="text" name="email"><br/>   

16.    

17. <input type="submit" value="register">   

18. </form>   



<script>

function validateemail()

{

var x=document.myform.email.v

var atposition=x.indexOf("@");

 

HTML/DOM events for JavaScript 

HTML or DOM events are widely used in JavaScript code. JavaScript code is 

executed with HTML/DOM events. So before learning JavaScript, let’s have 

some idea about events. 

Events Description 

onclick occurs when element is clicked. 

ondblclick occurs when element is double-clicked. 

onfocus occurs when an element gets focus such as button, 

input, textarea etc. 

onblur occurs when form looses the focus from an element. 

onsubmit occurs when form is submitted. 

onmouseover occurs when mouse is moved over an element. 

onmouseout occurs when mouse is moved out from an element (after 

moved over). 

onmousedown occurs when mouse button is pressed over an element. 

onmouseup occurs when mouse is released from an element (after 

mouse is pressed). 

onload occurs when document, object or frameset is loaded. 



onunload occurs when body or frameset is unloaded. 

onscroll occurs when document is scrolled. 

onresized occurs when document is resized. 

onreset occurs when form is reset. 

onkeydown occurs when key is being pressed. 

onkeypress occurs when user presses the key. 

onkeyup occurs when key is released. 

  

 

 

 

 

 

 

 

 

 

  

 

 

 



 

  

 

 

 

 

 

 

 

 

 

Website Development Services 

 

 

 

 

 

 

 



COLLECTIONS 

Collections in java is a framework that provides an architecture to store and manipulate the 

group of objects. 

All the operations that you perform on a data such as searching, sorting, insertion, 

manipulation, deletion etc. can be performed by Java Collections.  

Java Collection simply means a single unit of objects. Java Collection framework provides 

many interfaces (Set, List, Queue, Deque etc.) and classes (ArrayList, Vector, LinkedList, 

PriorityQueue, HashSet, LinkedHashSet, TreeSet etc). 

What is Collection in java 

Collection represents a single unit of objects i.e. a group.  

What is framework in java 

 provides readymade architecture. 

 represents set of classes and interface. 

 is optional. 

What is Collection framework 

Collection framework represents a unified architecture for storing and manipulating group of 

objects. It has: 

1. Interfaces and its implementations i.e. classes 

2. Algorithm. 

 

 

  



Hierarchy of Collection Framework 

Let us see the hierarchy of collection framework.The java.util package contains all the 

classes and interfaces for Collection framework. 

 

 

 

Methods of Collection interface 

There are many methods declared in the Collection interface. They are as follows: 

No. Method Description 

1 
public boolean add(Object 

element) 
is used to insert an element in this collection. 

2 public boolean addAll(Collection is used to insert the specified collection elements in the 



c) invoking collection. 

3 
public boolean remove(Object 

element) 
is used to delete an element from this collection. 

4 
public boolean 

removeAll(Collection c) 

is used to delete all the elements of specified collection 

from the invoking collection. 

5 
public boolean 

retainAll(Collection c) 

is used to delete all the elements of invoking collection 

except the specified collection. 

6 public int size() return the total number of elements in the collection. 

7 public void clear() removes the total no of element from the collection. 

8 
public boolean contains(Object 

element) 
is used to search an element. 

9 
public boolean 

containsAll(Collection c) 
is used to search the specified collection in this collection. 

10 public Iterator iterator() returns an iterator. 

11 public Object[] toArray() converts collection into array. 

12 public boolean isEmpty() checks if collection is empty. 

13 
public boolean equals(Object 

element) 
matches two collection. 

14 public int hashCode() returns the hashcode number for collection. 

 

Iterator interface 

Iterator interface provides the facility of iterating the elements in forward direction only.  

Methods of Iterator interface 

There are only three methods in the Iterator interface. They are:  

No. Method Description 

1 
public boolean 

hasNext() 
It returns true if iterator has more elements. 



2 public Object next() 
It returns the element and moves the cursor pointer to the next 

element. 

3 public void remove() It removes the last elements returned by the iterator. It is rarely used. 

 

What we are going to learn in Java Collections Framework  

1. ArrayList class 
2. LinkedList class 
3. List interface 
4. HashSet class 
5. LinkedHashSet class 
6. TreeSet class 
7. PriorityQueue class 
8. Map interface 
9. HashMap class 
10. LinkedHashMap class 
11. TreeMap class 
12. Hashtable class 
13. Sorting 
14. Comparable interface 
15. Comparator interface 
16. Properties class in Java 

 

Java ArrayList class 

 

https://www.javatpoint.com/TreeMap-class-in-collection-framework
https://www.javatpoint.com/properties-class-in-java
https://www.javatpoint.com/java-arraylist
https://www.javatpoint.com/java-priorityqueue
https://www.javatpoint.com/Hashtable-class-in-collection-framework
https://www.javatpoint.com/Comparator-interface-in-collection-framework
https://www.javatpoint.com/Comparable-interface-in-collection-framework
https://www.javatpoint.com/java-linkedhashmap
https://www.javatpoint.com/java-linkedlist
https://www.javatpoint.com/java-list
https://www.javatpoint.com/java-map
https://www.javatpoint.com/java-treeset
https://www.javatpoint.com/Sorting-in-collection-framework
https://www.javatpoint.com/java-linkedhashset
https://www.javatpoint.com/java-hashset
https://www.javatpoint.com/java-hashmap


Java ArrayList class uses a dynamic array for storing the elements. It inherits AbstractList 

class and implements List interface.  

The important points about Java ArrayList class are: 

 Java ArrayList class can contain duplicate elements. 
 Java ArrayList class maintains insertion order. 
 Java ArrayList class is non synchronized. 
 Java ArrayList allows random access because array works at the index basis. 
 In Java ArrayList class, manipulation is slow because a lot of shifting needs to be occurred if 

any element is removed from the array list. 

Hierarchy of ArrayList class 

As shown in above diagram, Java ArrayList class extends AbstractList class which 

implements List interface. The List interface extends Collection and Iterable interfaces in 

hierarchical order. 

ArrayList class declaration 

Let's see the declaration for java.util.ArrayList class. 

1. public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Clone
able, Serializable   

Constructors of Java ArrayList 

 

ArrayList() It is used to build an empty array list. 

ArrayList(Collection 

c) 

It is used to build an array list that is initialized with the elements of the 

collection c. 

ArrayList(int 

capacity) 
It is used to build an array list that has the specified initial capacity.  

 

Methods of Java ArrayList 

Method Description 

void add(int index, Object 

element) 

It is used to insert the specified element at the specified position index 

in a list. 

boolean addAll(Collection 

c) 

It is used to append all of the elements in the specified collection to the 

end of this list, in the order that they are returned by the specified 

collection's iterator. 



void clear() It is used to remove all of the elements from this list. 

int lastIndexOf(Object o) 
It is used to return the index in this list of the last occurrence of the 

specified element, or -1 if the list does not contain this element. 

Object[] toArray() 
It is used to return an array containing all of the elements in this list in 

the correct order. 

Object[] toArray(Object[] 

a) 

It is used to return an array containing all of the elements in this list in 

the correct order. 

boolean add(Object o) It is used to append the specified element to the end of a list. 

boolean addAll(int index, 

Collection c) 

It is used to insert all of the elements in the specified collection into this 

list, starting at the specified position. 

Object clone() It is used to return a shallow copy of an ArrayList. 

int indexOf(Object o) 
It is used to return the index in this list of the first occurrence of the 

specified element, or -1 if the List does not contain this element. 

void trimToSize() 
It is used to trim the capacity of this ArrayList instance to be the list's 

current size. 

 

Java Non-generic Vs Generic Collection 

Java collection framework was non-generic before JDK 1.5. Since 1.5, it is generic. 

Java new generic collection allows you to have only one type of object in collection. Now it 

is type safe so typecasting is not required at run time. 

Let's see the old non-generic example of creating java collection. 

1. ArrayList al=new ArrayList();//creating old non-generic arraylist   

Let's see the new generic example of creating java collection. 

1. ArrayList<String> al=new ArrayList<String>();//creating new generic arraylist   

In generic collection, we specify the type in angular braces. Now ArrayList is forced to have 

only specified type of objects in it. If you try to add another type of object, it gives compile 

time error. 

For more information of java generics, click here Java Generics Tutorial.  

 

https://www.javatpoint.com/generics-in-java


Java ArrayList Example 

import java.util.*;   

class TestCollection1{   

 public static void main(String args[]){   

  ArrayList<String> list=new ArrayList<String>();//Creating arraylist   

  list.add("Ravi");//Adding object in arraylist   

  list.add("Vijay");   

  list.add("Ravi");   

  list.add("Ajay");   

  //Traversing list through Iterator   

  Iterator itr=list.iterator();   

  while(itr.hasNext()){   

   System.out.println(itr.next());   

  }   

 }   

}   

Output:- 
       Ravi 

       Vijay 

       Ravi 

       Ajay 

Two ways to iterate the elements of collection in java 

There are two ways to traverse collection elements: 

1. By Iterator interface. 
2. By for-each loop. 

In the above example, we have seen traversing ArrayList by Iterator. Let's see the example to 

traverse ArrayList elements using for-each loop. 

Iterating Collection through for-each loop 

import java.util.*;   



class TestCollection2{   

 public static void main(String args[]){   

  ArrayList<String> al=new ArrayList<String>();   

  al.add("Ravi");   

  al.add("Vijay");   

  al.add("Ravi");   

  al.add("Ajay");   

  for(String obj:al)   

    System.out.println(obj);   

 }   

}   

OUTPUT:- 
       Ravi 

       Vijay 

       Ravi 

       Ajay 

 

User-defined class objects in Java ArrayList 

Let's see an example where we are storing Student class object in array list. 

class Student{   

  int rollno;   

  String name;   

int age;   

  Student(int rollno,String name,int age){   

   this.rollno=rollno;   

   this.name=name;   

   this.age=age;   

  }   



}   

import java.util.*;   

public class TestCollection3{   

 public static void main(String args[]){   

  //Creating user-defined class objects   

  Student s1=new Student(101,"Sonoo",23);   

  Student s2=new Student(102,"Ravi",21);   

  Student s2=new Student(103,"Hanumat",25);   

  //creating arraylist   

  ArrayList<Student> al=new ArrayList<Student>(); 

al.add(s1);//adding Student class object   

   al.add(s2);   

                   al.add(s3);   

                 //Getting Iterator   

                    Iterator itr=al.iterator();   

                   //traversing elements of ArrayList object   

                     while(itr.hasNext()){   

                     Student st=(Student)itr.next();   

                     System.out.println(st.rollno+" "+st.name+" "+st.age);   

                   }   

      `         }   

       }   

Output:- 

       101 Sonoo 23 

       102 Ravi 21 

       103 Hanumat 25 

 

Example of addAll(Collection c) method 

import java.util.*;   

class TestCollection4{   

 public static void main(String args[]){   



  ArrayList<String> al=new ArrayList<String>();   

         al.add("Ravi");   

  al.add("Vijay");   

         al.add("Ajay");   

  ArrayList<String> al2=new ArrayList<String>();   

  al2.add("Sonoo");   

  al2.add("Hanumat");   

  al.addAll(al2);//adding second list in first list   

  Iterator itr=al.iterator();   

  while(itr.hasNext()){   

   System.out.println(itr.next());   

  }   

 }   

}   

Output:- 
       Ravi 

       Vijay 

       Ajay 

       Sonoo 

       Hanumat 

 

Example of removeAll() method 

import java.util.*;   

class TestCollection5{   

 public static void main(String args[]){   

  ArrayList<String> al=new ArrayList<String>();   

  al.add("Ravi");   

  al.add("Vijay");   

  al.add("Ajay");   



  ArrayList<String> al2=new ArrayList<String>();   

  al2.add("Ravi");   

  al2.add("Hanumat");   

  al.removeAll(al2);   

  System.out.println("iterating the elements after removing the elements of al2...");   

  Iterator itr=al.iterator();   

  while(itr.hasNext()){   

   System.out.println(itr.next());   

  }   

   

  }   

}   

Output:- 
       iterating the elements after removing the elements of al2... 

       Vijay 

       Ajay 

 

 

Example of retainAll() method 

import java.util.*;   

class TestCollection6{   

 public static void main(String args[]){   

  ArrayList<String> al=new ArrayList<String>();   

  al.add("Ravi");   

  al.add("Vijay");   

  al.add("Ajay");   

  ArrayList<String> al2=new ArrayList<String>();   

  al2.add("Ravi");   



  al2.add("Hanumat");   

  al.retainAll(al2);   

  System.out.println("iterating the elements after retaining the elements of al2...");   

  Iterator itr=al.iterator();   

  while(itr.hasNext()){   

   System.out.println(itr.next());   

  }   

 }   

}   

Output:-  

       iterating the elements after retaining the elements of al2... 

       Ravi 

Java ArrayList Example: Book 

Let's see an ArrayList example where we are adding books to list and printing all the books. 

import java.util.*;   

class Book {   

int id;   

String name,author,publisher;   

int quantity;   

public Book(int id, String name, String author, String publisher, int quantity) {   

    this.id = id;   

    this.name = name;   

    this.author = author;   

    this.publisher = publisher;   

    this.quantity = quantity;   

}   



}   

public class ArrayListExample {   

public static void main(String[] args) {   

    //Creating list of Books   

    List<Book> list=new ArrayList<Book>();   

    //Creating Books   

    Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8);   

    Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc Graw Hill”
,4);   

    Book b3=new Book(103,"Operating System","Galvin","Wiley",6);   

    //dding Books to list   

      list.dd(b1);   

    list.add(b2);   

   list.add(b3);   

    //Traversing list   

    for(Book b:list){   

        System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);   

    }   

}   

}  

Output: 

101 Let us C Yashwant Kanetkar BPB 8 

102 Data Communication& Networking Forouzan Mc Graw Hill 4 

103 Operating System Galvin Wiley 6 

 

 

 



Java LinkedList class 
 

 

Java LinkedList class uses doubly linked list to store the elements. It provides a linked-list 

data structure. It inherits the AbstractList class and implements List and Deque interfaces. 

The important points about Java LinkedList are: 

 Java LinkedList class can contain duplicate elements. 
 Java LinkedList class maintains insertion order. 
 Java LinkedList class is non synchronized. 
 In Java LinkedList class, manipulation is fast because no shifting needs to be occurred. 
 Java LinkedList class can be used as list, stack or queue. 

Hierarchy of LinkedList class 

As shown in above diagram, Java LinkedList class extends AbstractSequentialList class and 

implements List and Deque interfaces. 

Doubly Linked List 

In case of doubly linked list, we can add or remove elements from both side. 



 

LinkedList class declaration 

Let's see the declaration for java.util.LinkedList class. 

1. public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Deque<E>,
 Cloneable, Serializable   

Constructors of Java LinkedList 

Constructor Description 

LinkedList() It is used to construct an empty list. 

LinkedList(Collection 

c) 

It is used to construct a list containing the elements of the specified 

collection, in the order they are returned by the collection's iterator. 

 

Methods of Java LinkedList 

Method Description 

void add(int index, Object 

element) 

It is used to insert the specified element at the specified position index 

in a list. 

void addFirst(Object o) It is used to insert the given element at the beginning of a list. 

void addLast(Object o) It is used to append the given element to the end of a list. 

int size() It is used to return the number of elements in a list 

boolean add(Object o) It is used to append the specified element to the end of a list. 

boolean contains(Object o) It is used to return true if the list contains a specified element. 

boolean remove(Object o) It is used to remove the first occurence of the specified element in a list. 

Object getFirst() It is used to return the first element in a list. 

Object getLast() It is used to return the last element in a list. 

int indexOf(Object o) 
It is used to return the index in a list of the first occurrence of the 

specified element, or -1 if the list does not contain any element. 

int lastIndexOf(Object o) It is used to return the index in a list of the last occurrence of the 



specified element, or -1 if the list does not contain any element. 

Java LinkedList Example 

 

import java.util.*;   

public class TestCollection7{   

 public static void main(String args[]){   

   

  LinkedList<String> al=new LinkedList<String>();   

  al.add("Ravi");   

  al.add("Vijay");   

        al.add("Ravi");   

  al.add("Ajay");   

   

  Iterator<String> itr=al.iterator();   

  while(itr.hasNext()){   

   System.out.println(itr.next());   

  }   

 }  

 

 

Output: 

       Ravi 

       Vijay 

       Ravi 

       Ajay 

 

Java LinkedList Example: Book 

 

import java.util.*;   



class Book {   

int id;   

String name,author,publisher;   

int quantity;   

public Book(int id, String name, String author, String publisher, int quantity) {   

    this.id = id;   

    this.name = name;   

    this.author = author;   

    this.publisher = publisher;   

    this.quantity = quantity;   

}   

}   

public class LinkedListExample {   

public static void main(String[] args) {   

    //Creating list of Books   

    List<Book> list=new LinkedList<Book>();   

    //Creating Books   

    Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8);   

    Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc 

Graw Hill",4);   

    Book b3=new Book(103,"Operating System","Galvin","Wiley",6);   

    //Adding Books to list   

    list.add(b1);   

    list.add(b2);   

    list.add(b3);   

    //Traversing list   



    for(Book b:list){   

  System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);  

    }   

}   

}   

Output: 

101 Let us C Yashwant Kanetkar BPB 8 

102 Data Communications & Networking Forouzan Mc Graw Hill 4 

103 Operating System Galvin Wiley 6 

 

Difference between ArrayList and LinkedList 

ArrayList and LinkedList both implements List interface and maintains insertion order. Both 

are non synchronized classes. 

But there are many differences between ArrayList and LinkedList classes that are given 

below. 

ArrayList LinkedList 

1) ArrayList internally uses dynamic array to store 

the elements. 

LinkedList internally uses doubly linked list to 

store the elements. 

2) Manipulation with ArrayList is slow because it 

internally uses array. If any element is removed from 

the array, all the bits are shifted in memory. 

Manipulation with LinkedList is faster than 

ArrayList because it uses doubly linked list so 

no bit shifting is required in memory. 

3) ArrayList class can act as a list only because it 

implements List only. 

LinkedList class can act as a list and queue 

both because it implements List and Deque 

interfaces. 

4) ArrayList is better for storing and accessing data. LinkedList is better for manipulating data. 

Example of ArrayList and LinkedList in Java 

 

  import java.util.*;     

  class TestArrayLinked{     

   public static void main(String args[]){     

        

    List<String> al=new ArrayList<String>();//creating arraylist     



    al.add("Ravi");//adding object in arraylist     

    al.add("Vijay");     

    al.add("Ravi");     

    al.add("Ajay");     

       

    List<String> al2=new LinkedList<String>();//creating linkedlist     

    al2.add("James");//adding object in linkedlist     

    al2.add("Serena");     

    al2.add("Swati");     

    al2.add("Junaid");     

       

    System.out.println("arraylist: "+al);   

    System.out.println("linkedlist: "+al2);   

 }     

} 

 

Output: 

arraylist: [Ravi,Vijay,Ravi,Ajay] 

linkedlist: [James,Serena,Swati,Junaid] 

 

Java HashSet class 
 

 



Java HashSet class is used to create a collection that uses a hash table for storage. It inherits 

the AbstractSet class and implements Set interface.  

The important points about Java HashSet class are: 

 HashSet stores the elements by using a mechanism called hashing. 
 HashSet contains unique elements only. 

Difference between List and Set 

List can contain duplicate elements whereas Set contains unique elements only. 

Hierarchy of HashSet class 

The HashSet class extends AbstractSet class which implements Set interface. The Set 

interface inherits Collection and Iterable interfaces in hierarchical order. 

HashSet class declaration 

Let's see the declaration for java.util.HashSet class. 

1. public class HashSet<E> extends AbstractSet<E> implements Set<E>, Cloneable, Serializable   

Constructors of Java HashSet class: 

Constructor Description 

HashSet() It is used to construct a default HashSet. 

HashSet(Collection 

c) 
It is used to initialize the hash set by using the elements of the collection c. 

HashSet(int 

capacity) 

It is used to initialize the capacity of the hash set to the given integer value 

capacity. The capacity grows automatically as elements are added to the 

HashSet. 

 

Methods of Java HashSet class: 

Method Description 

void clear() It is used to remove all of the elements from this set. 

boolean 

contains(Object o) 
It is used to return true if this set contains the specified element. 

boolean add(Object o) It is used to adds the specified element to this set if it is not already present. 



boolean isEmpty() It is used to return true if this set contains no elements. 

boolean remove(Object 

o) 
It is used to remove the specified element from this set if it is present. 

Object clone() 
It is used to return a shallow copy of this HashSet instance: the elements 

themselves are not cloned. 

Iterator iterator() It is used to return an iterator over the elements in this set. 

int size() It is used to return the number of elements in this set. 

 

 

Java HashSet Example 

import java.util.*;   

class TestCollection9{   

 public static void main(String args[]){   

  //Creating HashSet and adding elements   

  HashSet<String> set=new HashSet<String>();   

  set.add("Ravi");   

  set.add("Vijay");   

  set.add("Ravi");   

  set.add("Ajay");   

  //Traversing elements   

       Iterator<String> itr=set.iterator();   

  while(itr.hasNext()){   

   System.out.println(itr.next());   

  }   

 }   

}   



Output:- 

       Ajay 

       Vijay 

       Ravi 

 

 



Java HashSet Example: Book 

Let's see a HashSet example where we are adding books to set and printing all the books. 

import java.util.*;   

class Book {   

int id;   

String name,author,publisher;   

int quantity;   

public Book(int id, String name, String author, String publisher, int quantity) {   

    this.id = id;   

    this.name = name;   

    this.author = author;   

    this.publisher = publisher;   

    this.quantity = quantity;   

}   

    }   

public class HashSetExample {   

public static void main(String[] args) {   

    HashSet<Book> set=new HashSet<Book>();   

    //Creating Books  

    Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8);   

  
Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc Graw Hill",4)
;   

    Book b3=new Book(103,"Operating System","Galvin","Wiley",6);   

    //Adding Books to HashSet   

    set.add(b1);   



    set.add(b2);   

    set.add(b3);   

    //Traversing HashSet   

    for(Book b:set){   

    System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);   

    }   

}   

}   

Output: 

101 Let us C Yashwant Kanetkar BPB 8 

102 Data Communications & Networking Forouzan Mc Graw Hill 4 

103 Operating System Galvin Wiley  

 

Java LinkedHashSet class 

 



Java LinkedHashSet class is a Hash table and Linked list implementation of the set interface. 

It inherits HashSet class and implements Set interface. 

The important points about Java LinkedHashSet class are: 

 Contains unique elements only like HashSet. 
 Provides all optional set operations, and permits null elements. 
 Maintains insertion order. 

Hierarchy of LinkedHashSet class 

The LinkedHashSet class extends HashSet class which implements Set interface. The Set 

interface inherits Collection and Iterable interfaces in hierarchical order. 

LinkedHashSet class declaration 

Let's see the declaration for java.util.LinkedHashSet class. 

1. public class LinkedHashSet<E> extends HashSet<E> implements Set<E>, Cloneable, Serializab
le   

Constructors of Java LinkedHashSet class 

Constructor Description 

HashSet() It is used to construct a default HashSet. 

HashSet(Collection c) 
It is used to initialize the hash set by using the elements of the 

collection c. 

LinkedHashSet(int capacity) 
It is used initialize the capacity of the linkedhashset to the given 

integer value capacity. 

LinkedHashSet(int capacity, 

float fillRatio) 

It is used to initialize both the capacity and the fill ratio (also called 

load capacity) of the hash set from its argument. 

 

Example of LinkedHashSet class: 

 

import java.util.*;   

class TestCollection10{   

 public static void main(String args[]){   

  LinkedHashSet<String> al=new LinkedHashSet<String>();   



       al.add("Ravi");   

  al.add("Vijay");   

  al.add("Ravi");   

  al.add("Ajay");   

  Iterator<String> itr=al.iterator();   

  while(itr.hasNext()){   

   System.out.println(itr.next());   

  }   

 }   

}   

Output:- 

       Ravi 

       Vijay 

       Ajay 

 

Java LinkedHashSet Example: Book 

import java.util.*;   

class Book {   

int id;   

String name,author,publisher;   

int quantity;   

public Book(int id, String name, String author, String publisher, int quantity) {   

    this.id = id;   

    this.name = name;   

    this.author = author;   

    this.publisher = publisher;   



    this.quantity = quantity;   

}   

}   

public class LinkedHashSetExample {   

public static void main(String[] args) {   

    LinkedHashSet<Book> hs=new LinkedHashSet<Book>();   

    //Creating Books   

    Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8);  

    Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc Graw Hill”4);   

    Book b3=new Book(103,"Operating System","Galvin","Wiley",6);   

    //Adding Books to hash table   

    hs.add(b1);   

    hs.add(b2);   

    hs.add(b3);   

    //Traversing hash table   

   for(Book b:hs){   

    System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);   

    }   

}   

           }   

Output: 

101 Let us C Yashwant Kanetkar BPB 8 

102 Data Communications & Networking Forouzan Mc Graw Hill 4 

103 Operating System Galvin Wiley 6 

 
 

 



 

Java TreeSet class 

 

Java TreeSet class implements the Set interface that uses a tree for storage. It inherits 

AbstractSet class and implements NavigableSet interface. The objects of TreeSet class are 

stored in ascending order. 

The important points about Java TreeSet class are: 

 Contains unique elements only like HashSet. 
 Access and retrieval times are quiet fast. 
 Maintains ascending order. 

Hierarchy of TreeSet class 

As shown in above diagram, Java TreeSet class implements NavigableSet interface. The 

NavigableSet interface extends SortedSet, Set, Collection and Iterable interfaces in 

hierarchical order.  



TreeSet class declaration 

Let's see the declaration for java.util.TreeSet class. 

1. public class TreeSet<E> extends AbstractSet<E> implements NavigableSet<E>, Cloneable, Ser
ializable   

Constructors of Java TreeSet class 

Constructor Description 

TreeSet() 
It is used to construct an empty tree set that will be sorted in an ascending 

order according to the natural order of the tree set. 

TreeSet(Collection c) 
It is used to build a new tree set that contains the elements of the 

collection c. 

TreeSet(Comparator 

comp) 

It is used to construct an empty tree set that will be sorted according to 

given comparator. 

TreeSet(SortedSet ss) 
It is used to build a TreeSet that contains the elements of the given 

SortedSet. 

Methods of Java TreeSet class 

Method Description 

boolean addAll(Collection 

c) 

It is used to add all of the elements in the specified collection to this 

set. 

boolean contains(Object o) It is used to return true if this set contains the specified element. 

boolean isEmpty() It is used to return true if this set contains no elements. 

boolean remove(Object o) It is used to remove the specified element from this set if it is present. 

void add(Object o) 
It is used to add the specified element to this set if it is not already 

present. 

void clear() It is used to remove all of the elements from this set. 

Object clone() It is used to return a shallow copy of this TreeSet instance. 

Object first() 
It is used to return the first (lowest) element currently in this sorted 

set. 

Object last() It is used to return the last (highest) element currently in this sorted 



set. 

int size() It is used to return the number of elements in this set. 

Java TreeSet Example 

import java.util.*;   

class TestCollection11{   

 public static void main(String args[]){   

  //Creating and adding elements   

  TreeSet<String> al=new TreeSet<String>();   

  al.add("Ravi");   

  al.add("Vijay");   

  al.add("Ravi");   

  al.add("Ajay");   

  //Traversing elements   

  Iterator<String> itr=al.iterator();   

  while(itr.hasNext()){   

   System.out.println(itr.next());   

  }   

 }   

}   

Test it Now  

Output: 

Ajay 

Ravi 

Vijay 

Java TreeSet Example: Book 

Let's see a TreeSet example where we are adding books to set and printing all the books. The 

elements in TreeSet must be of Comparable type. String and Wrapper classes are Comparable 

http://www.javatpoint.com/opr/test.jsp?filename=TestCollection11


by default. To add user-defined objects in TreeSet, you need to implement Comparable 

interface. 

import java.util.*;   

class Book implements Comparable<Book>{   

int id;   

String name,author,publisher;   

int quantity;   

public Book(int id, String name, String author, String publisher, int quantity) {   

    this.id = id;   

    this.name = name;   

    this.author = author;   

    this.publisher = publisher;   

    this.quantity = quantity;   

}   

public int compareTo(Book b) {   

    if(id>b.id){   

        return 1;   

    }else if(id<b.id){   

        return -1;   

    }else{   

    return 0;   

    }   

}   

}   

public class TreeSetExample {   

public static void main(String[] args) {   



    Set<Book> set=new TreeSet<Book>();   

    //Creating Books   

    Book b1=new Book(121,"Let us C","Yashwant Kanetkar","BPB",8);   

    Book b2=new Book(233,"Operating System","Galvin","Wiley",6);   

    Book b3=new Book(101,"Data Communications & Networking","Forouzan","Mc Graw Hill"
,4);   

    //Adding Books to TreeSet   

    set.add(b1);   

    set.add(b2);   

    set.add(b3);   

    //Traversing TreeSet   

    for(Book b:set){   

    System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);   

    }   

}   

}   

Output: 

101 Data Communications & Networking Forouzan Mc Graw Hill 4 

121 Let us C Yashwant Kanetkar BPB 8 

233 Operating System Galvin Wiley 6 

 

Java Queue Interface 

Java Queue interface orders the element in FIFO(First In First Out) manner. In FIFO, first 

element is removed first and last element is removed at last. 

Queue Interface declaration 

1. public interface Queue<E> extends Collection<E>   

Methods of Java Queue Interface 



Method Description 

boolean 

add(object) 

It is used to insert the specified element into this queue and return true upon 

success. 

boolean 

offer(object) 
It is used to insert the specified element into this queue. 

Object remove() It is used to retrieves and removes the head of this queue. 

Object poll() 
It is used to retrieves and removes the head of this queue, or returns null if this 

queue is empty. 

Object element() It is used to retrieves, but does not remove, the head of this queue. 

Object peek() 
It is used to retrieves, but does not remove, the head of this queue, or returns 

null if this queue is empty. 

 

PriorityQueue class 

The PriorityQueue class provides the facility of using queue. But it does not orders the 

elements in FIFO manner. It inherits AbstractQueue class.  

PriorityQueue class declaration 

Let's see the declaration for java.util.PriorityQueue class. 

1. public class PriorityQueue<E> extends AbstractQueue<E> implements Serializable   

Java PriorityQueue Example 

import java.util.*;   

class TestCollection12{   

public static void main(String args[]){   

PriorityQueue<String> queue=new PriorityQueue<String>();   

queue.add("Amit");   

queue.add("Vijay");   

queue.add("Karan");   

queue.add("Jai");   



queue.add("Rahul");   

System.out.println("head:"+queue.element());   

System.out.println("head:"+queue.peek());   

System.out.println("iterating the queue elements:");   

Iterator itr=queue.iterator();   

while(itr.hasNext()){   

System.out.println(itr.next());   

}   

queue.remove();   

queue.poll();   

System.out.println("after removing two elements:");   

Iterator<String> itr2=queue.iterator();   

while(itr2.hasNext()){   

System.out.println(itr2.next());   

}   

}   

}   

 
Output:- 

       head:Amit 

       head:Amit 

       iterating the queue elements: 

       Amit 

       Jai 

       Karan 

       Vijay 

       Rahul 

       after removing two elements: 

       Karan 

       Rahul 

       Vijay 

Java PriorityQueue Example: Book 

Let's see a PriorityQueue example where we are adding books to queue and printing all the 



books. The elements in PriorityQueue must be of Comparable type. String and Wrapper 

classes are Comparable by default. To add user-defined objects in PriorityQueue, you need to 

implement Comparable interface. 

import java.util.*;   

class Book implements Comparable<Book>{   

int id;   

String name,author,publisher;   

int quantity;   

public Book(int id, String name, String author, String publisher, int quantity) {   

    this.id = id;   

    this.name = name;   

    this.author = author;   

    this.publisher = publisher;   

    this.quantity = quantity;   

}   

public int compareTo(Book b) {   

    if(id>b.id){   

        return 1;   

    }else if(id<b.id){   

        return -1;   

    }else{   

    return 0;   

    }   

}   

}   

public class LinkedListExample {   



public static void main(String[] args) {   

    Queue<Book> queue=new PriorityQueue<Book>();   

    //Creating Books   

    Book b1=new Book(121,"Let us C","Yashwant Kanetkar","BPB",8);   

    Book b2=new Book(233,"Operating System","Galvin","Wiley",6);   

    Book b3=new Book(101,"Data Communications & Networking","Forouzan","Mc Graw Hill”
,4);   

    //Adding Books to the queue   

    queue.add(b1);   

    queue.add(b2);   

    queue.add(b3);   

    System.out.println("Traversing the queue elements:");   

    //Traversing queue elements   

    for(Book b:queue){   

    System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);   

    }   

    queue.remove();   

    System.out.println("After removing one book record:");   

    for(Book b:queue){   

        System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);   

        }   

}   

}   

Output: 

Traversing the queue elements: 

101 Data Communications & Networking Forouzan Mc Graw Hill 4 

233 Operating System Galvin Wiley 6 

121 Let us C Yashwant Kanetkar BPB 8 



After removing one book record: 

121 Let us C Yashwant Kanetkar BPB 8 

233 Operating System Galvin Wiley 6 

 

Java Deque Interface 

Java Deque Interface is a linear collection that supports element insertion and removal at both 

ends. Deque is an acronym for "double ended queue". 

 

Deque Interface declaration 

1. public interface Deque<E> extends Queue<E>   

Methods of Java Deque Interface 

Method Description 

boolean 

add(object) 

It is used to insert the specified element into this deque and return true upon 

success. 

boolean 

offer(object) 
It is used to insert the specified element into this deque. 

Object remove() It is used to retrieves and removes the head of this deque. 

Object poll() 
It is used to retrieves and removes the head of this deque, or returns null if this 

deque is empty. 

Object element() It is used to retrieves, but does not remove, the head of this deque. 

Object peek() 
It is used to retrieves, but does not remove, the head of this deque, or returns 

null if this deque is empty. 

ArrayDeque class 

The ArrayDeque class provides the facility of using deque and resizable-array. It inherits 

AbstractCollection class and implements the Deque interface. 

The important points about ArrayDeque class are: 

 Unlike Queue, we can add or remove elements from both sides. 
 Null elements are not allowed in the ArrayDeque. 
 ArrayDeque is not thread safe, in the absence of external synchronization. 
 ArrayDeque has no capacity restrictions. 



 ArrayDeque is faster than LinkedList and Stack. 

ArrayDeque Hierarchy 

The hierarchy of ArrayDeque class is given in the figure displayed at the right side of the 

page. 

ArrayDeque class declaration 

Let's see the declaration for java.util.ArrayDeque class. 

1. public class ArrayDeque<E> extends AbstractCollection<E> implements Deque<E>, Cloneable
, Serializable   

 

Java ArrayDeque Example 

import java.util.*;   

public class ArrayDequeExample {   

   public static void main(String[] args) {   

   //Creating Deque and adding elements   

   Deque<String> deque = new ArrayDeque<String>();   

   deque.add("Ravi");     

   deque.add("Vijay");      

   deque.add("Ajay");     

   //Traversing elements   

   for (String str : deque) {   

   System.out.println(str);   

   }   

   }   

}   

Output: 

Ravi 

Vijay 



Ajay 

Java ArrayDeque Example: offerFirst() and pollLast() 

import java.util.*;   

public class DequeExample {   

public static void main(String[] args) {   

    Deque<String> deque=new ArrayDeque<String>();   

    deque.offer("arvind");   

    deque.offer("vimal");   

    deque.add("mukul");   

    deque.offerFirst("jai");   

    System.out.println("After offerFirst Traversal...");   

    for(String s:deque){   

        System.out.println(s);   

    }   

    //deque.poll();   

    //deque.pollFirst();//it is same as poll()   

    deque.pollLast();   

    System.out.println("After pollLast() Traversal...");   

    for(String s:deque){   

        System.out.println(s);   

    }   

}   

}   

Output: 

After offerFirst Traversal... 

jai 

arvind 



vimal 

mukul 

After pollLast() Traversal... 

jai 

arvind 

vimal 

 

Java ArrayDeque Example: Book 

import java.util.*;     

class Book {     

int id;     

String name,author,publisher;     

int quantity;     

public Book(int id, String name, String author, String publisher, int quantity) {     

    this.id = id;     

    this.name = name;     

    this.author = author;     

    this.publisher = publisher;     

    this.quantity = quantity;     

}     

}     

public class ArrayDequeExample {     

public static void main(String[] args) {     

    Deque<Book> set=new ArrayDeque<Book>();     

    //Creating Books     

    Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8);     

    Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc Graw Hill"
,4);     

    Book b3=new Book(103,"Operating System","Galvin","Wiley",6);     



    //Adding Books to Deque    

    set.add(b1);     

    set.add(b2);     

    set.add(b3);     

    //Traversing ArrayDeque   

    for(Book b:set){     

    System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);     

    }     

}     

}     

Output: 

101 Let us C Yashwant Kanetkar BPB 8 

102 Data Communications & Networking Forouzan Mc Graw Hill 4 

103 Operating System Galvin Wiley 6 

 

Difference between ArrayList and Vector 

ArrayList and Vector both implements List interface and maintains insertion order. 

But there are many differences between ArrayList and Vector classes that are given below. 

ArrayList Vector 

1) ArrayList is not synchronized. Vector is synchronized. 

2) ArrayList increments 50% of 

current array size if number of 

element exceeds from its capacity. 

Vector increments 100% means doubles the array size if total 

number of element exceeds than its capacity. 

3) ArrayList is not a legacy class, it is 

introduced in JDK 1.2. 
Vector is a legacy class. 

4) ArrayList is fast because it is non-

synchronized. 

Vector is slow because it is synchronized i.e. in multithreading 

environment, it will hold the other threads in runnable or non-

runnable state until current thread releases the lock of object. 



5) ArrayList uses Iterator interface to 

traverse the elements. 

Vector uses Enumeration interface to traverse the elements. 

But it can use Iterator also. 

Example of Java ArrayList 

 

import java.util.*;     

class TestArrayList21{     

 public static void main(String args[]){     

      

  List<String> al=new ArrayList<String>();//creating arraylist     

  al.add("Sonoo");//adding object in arraylist     

  al.add("Michael");     

  al.add("James");     

  al.add("Andy");     

  //traversing elements using Iterator   

  Iterator itr=al.iterator();   

  while(itr.hasNext()){   

   System.out.println(itr.next());   

  }     

 }     

}     

  

Output: 

Sonoo 

Michael 

James 

Andy 

Example of Java Vector 



Let's see a simple example of java Vector class that uses Enumeration interface. 

import java.util.*;       

class TestVector1{       

 public static void main(String args[]){       

  Vector<String> v=new Vector<String>();//creating vector   

  v.add("umesh");//method of Collection   

  v.addElement("irfan");//method of Vector   

  v.addElement("kumar");   

  //traversing elements using Enumeration   

  Enumeration e=v.elements();   

  while(e.hasMoreElements()){   

   System.out.println(e.nextElement());   

  }   

 }       

}       

 

Output: 

umesh 

irfan 

kumar 

 

 

 

 

 
 

 



 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 





























































AJAX 

AJAX is an acronym for Asynchronous JavaScript and XML. It is a group of inter-related 
technologies like JavaScript, DOM, XML, HTML, CSS etc. 

AJAX allows you to send and receive data asynchronously without reloading the web page. So it 
is fast. 

AJAX allows you to send only important information to the server not the entire page. So only 
valuable data from the client side is routed to the server side. It makes your application 
interactive and faster. 

 Update a web page without reloading the page 

 Request data from a server - after the page has loaded 

 Receive data from a server - after the page has loaded 

 Send data to a server - in the background 

 

Where it is used? 

There are too many web applications running on the web that are using ajax technology like 

gmail, facebook,twitter, google map, youtube etc. 

Before understanding AJAX, let’s understand classic web application model and ajax web 

application model first. 

Synchronous (Classic Web-Application Model) 

A synchronous request blocks the client until operation completes i.e. browser is not 

unresponsive. In such case, javascript engine of the browser is blocked. 

 

 

 



As you can see in the above image, full page is refreshed at request time and user is blocked 

until request completes. 

Let's understand it another way. 

 

 

Asynchronous (AJAX Web-Application Model) 

An asynchronous request doesn’t block the client i.e. browser is responsive. At that time, user 

can perform another operations also. In such case, javascript engine of the browser is not 

blocked. 

 

As you can see in the above image, full page is not refreshed at request time and user gets 

response from the ajax engine. 



Let's try to understand asynchronous communication by the image given below. 

 

 

 

 AJAX Technologies 

As describe earlier, ajax is not a technology but group of inter-related technologies. AJAX 

technologies includes: 

 HTML/XHTML and CSS 
 DOM 
 XML or JSON 
 XMLHttpRequest 
 JavaScript 

 

HTML/XHTML and CSS 

These technologies are used for displaying content and style. It is mainly used for 

presentation. 

 

DOM 

It is used for dynamic display and interaction with data. 

 



XML or JSON 

For carrying data to and from server. JSON (Javascript Object Notation) is like XML but 

short and faster than XML. 

 

XMLHttpRequest 

For asynchronous communication between client and server. For more visit next page. 

 

JavaScript 

It is used to bring above technologies together. 

Independently, it is used mainly for client-side validation. 

XMLHttpRequest 

An object of XMLHttpRequest is used for asynchronous communication between client and 

server. 

It performs following operations: 

1. Sends data from the client in the background 

2. Receives the data from the server 

3. Updates the webpage without reloading it. 

Properties of XMLHttpRequest object 

The common properties of XMLHttpRequest object are as follows: 

Property Description 

onReadyStateChange 
It is called whenever readystate attribute changes. It must not be used with 

synchronous requests. 

readyState 

represents the state of the request. It ranges from 0 to 4.  

0 UNOPENED open() is not called. 

1 OPENED open is called but send() is not called. 

2 HEADERS_RECEIVED send() is called, and headers and status are 



available. 

3 LOADING Downloading data; responseText holds the data. 

4 DONE The operation is completed fully. 

reponseText returns response as text. 

responseXML returns response as XML 

Methods of XMLHttpRequest object 

The important methods of XMLHttpRequest object are as follows: 

Method Description 

void open(method, URL) 
opens the request specifying get or post method 

and url. 

void open(method, URL, async) same as above but specifies asynchronous or not. 

void open(method, URL, async, username, 

password) 

same as above but specifies username and 

password. 

void send() sends get request. 

void send(string) send post request. 

setRequestHeader(header,value) it adds request headers. 

How AJAX works? 

AJAX communicates with the server using XMLHttpRequest object. Let's try to understand 

the flow of ajax or how ajax works by the image displayed below. 



 
 

As you can see in the above example, XMLHttpRequest object plays a important role. 

1. User sends a request from the UI and a javascript call goes to XMLHttpRequest 

object. 

2. HTTP Request is sent to the server by XMLHttpRequest object. 

3. Server interacts with the database using JSP, PHP, Servlet, ASP.net etc. 

4. Data is retrieved. 

5. Server sends XML data or JSON data to the XMLHttpRequest callback function. 

6. HTML and CSS data is displayed on the browser. 

 

Web Service Components 

There are three major web service components. 

1. SOAP 
2. WSDL 
3. UDDI 

SOAP 

SOAP stands for Simple Object Access Protocol. It is a XML-based protocol for accessing 

web services. 



SOAP is a W3C recommendation for communication between two applications. 

SOAP is XML based protocol. It is platform independent and language independent. By 

using SOAP, you will be able to interact with other programming language applications. 

 

Advantages of Soap Web Services 

WS Security: SOAP defines its own security known as WS Security. 

Language and Platform independent: SOAP web services can be written in any 

programming language and executed in any platform. 

Disadvantages of Soap Web Services 

Slow: SOAP uses XML format that must be parsed to be read. It defines many standards that 

must be followed while developing the SOAP applications. So it is slow and consumes more 

bandwidth and resource. 

WSDL dependent: SOAP uses WSDL and doesn't have any other mechanism to discover the 

service. 

 

WSDL 

WSDL is an acronym for Web Services Description Language. 

WSDL is a xml document containing information about web services such as method name, 

method parameter and how to access it. 

WSDL is a part of UDDI. It acts as a interface between web service applications. 

WSDL is pronounced as wiz-dull. 

 

Features of WSDL 

 WSDL is an XML-based protocol for information exchange in decentralized and 

distributed environments. 

 WSDL definitions describe how to access a web service and what operations it will 

perform. 

 WSDL is a language for describing how to interface with XML-based services. 

 WSDL is an integral part of Universal Description, Discovery, and Integration 

(UDDI), an XML-based worldwide business registry. 

 WSDL is the language that UDDI uses. 

 WSDL is pronounced as 'wiz-dull' and spelled out as 'W-S-D-L'. 



WSDL Elements 

A WSDL document contains the following elements: 

 Definition : It is the root element of all WSDL documents. It defines the name of the 

web service, declares multiple namespaces used throughout the remainder of the 

document, and contains all the service elements described here. 

 Data types : The data types to be used in the messages are in the form of XML 

schemas. 

 Message : It is an abstract definition of the data, in the form of a message presented 

either as an entire document or as arguments to be mapped to a method invocation. 

 Operation : It is the abstract definition of the operation for a message, such as 

naming a method, message queue, or business process, that will accept and process 

the message. 

 Port type : It is an abstract set of operations mapped to one or more end-points, 

defining the collection of operations for a binding; the collection of operations, as it is 

abstract, can be mapped to multiple transports through various bindings. 

 Binding : It is the concrete protocol and data formats for the operations and messages 

defined for a particular port type. 

 Port : It is a combination of a binding and a network address, providing the target 

address of the service communication. 

 Service : It is a collection of related end-points encompassing the service definitions 

in the file; the services map the binding to the port and include any extensibility 

definitions. 

In addition to these major elements, the WSDL specification also defines the following utility 

elements: 

 Documentation: This element is used to provide human-readable documentation and 

can be included inside any other WSDL element. 

 Import : This element is used to import other WSDL documents or XML Schemas. 

UDDI 

 UDDI stands for Universal Description, Discovery, and Integration. 

 UDDI is a specification for a distributed registry of web services. 

 UDDI is a platform-independent, open framework. 

 UDDI can communicate via SOAP, CORBA, Java RMI Protocol. 

 UDDI uses Web Service Definition Language(WSDL) to describe interfaces to web 

services. 

 UDDI is seen with SOAP and WSDL as one of the three foundation standards of web 

services. 

 UDDI is an open industry initiative, enabling businesses to discover each other and 

define how they interact over the Internet. 

UDDI has two sections: 

 A registry of all web service's metadata, including a pointer to the WSDL description 

of a service. 



 A set of WSDL port type definitions for manipulating and searching that registry. 

A business or a company can register three types of information into a UDDI registry. This 

information is contained in three elements of UDDI. 

These three elements are: 

 White Pages, 
 Yellow Pages, and 
 Green Pages. 

White Pages 

White pages contain: 

 Basic information about the company and its business. 

 Basic contact information including business name, address, contact phone number, 

etc. 

 A Unique identifiers for the company tax IDs. This information allows others to 

discover your web service based upon your business identification. 

Yellow Pages 

 Yellow pages contain more details about the company. They include descriptions of 

the kind of electronic capabilities the company can offer to anyone who wants to do 

business with it. 

 Yellow pages uses commonly accepted industrial categorization schemes, industry 

codes, product codes, business identification codes and the like to make it easier for 

companies to search through the listings and find exactly what they want. 

Green Pages 

Green pages contains technical information about a web service. A green page allows 

someone to bind to a Web service after it's been found. It includes: 

 The various interfaces 
 The URL locations 
 Discovery information and similar data required to find and run the Web service. 

NOTE : UDDI is not restricted to describing web services based on SOAP. Rather, UDDI 

can be used to describe any service, from a single webpage or email address all the way up to 

SOAP, CORBA, and Java RMI services. 

 

UDDI - Technical Architecture 

The UDDI technical architecture consists of three parts: 



UDDI Data Model 

UDDI Data Model is an XML Schema for describing businesses and web services. The data 

model is described in detail in the "UDDI Data Model" chapter. 

UDDI API Specification 

It is a specification of API for searching and publishing UDDI data. 

UDDI Cloud Services 

These are operator sites that provide implementations of the UDDI specification and 

synchronize all data on a scheduled basis. 

 

The UDDI Business Registry (UBR), also known as the Public Cloud, is a conceptually 

single system built from multiple nodes having their data synchronized through replication. 

The current cloud services provide a logically centralized, but physically distributed, 

directory. It means the data submitted to one root node will automatically be replicated across 

all the other root nodes. Currently, data replication occurs every 24 hours. 

UDDI cloud services are currently provided by Microsoft and IBM. Ariba had originally 

planned to offer an operator as well, but has since backed away from the commitment. 

Additional operators from other companies, including Hewlett-Packard, are planned for the 

near future. 

It is also possible to set up private UDDI registries. For example, a large company may set up 

its own private UDDI registry for registering all internal web services. As these registries are 

not automatically synchronized with the root UDDI nodes, they are not considered as a part 

of the UDDI cloud. 

UDDI - With WSDL 

The UDDI data model defines a generic structure for storing information about a business 

and the web services it publishes. The UDDI data model is completely extensible, including 

several repeating sequence structures of information. 

However, WSDL is used to describe the interface of a web service. WSDL is fairly 

straightforward to use with UDDI. 

 WSDL is represented in UDDI using a combination of businessService, 

bindingTemplate, and tModel information. 

 As with any service registered in UDDI, generic information about the service is 

stored in the businessService data structure, and information specific to how and 

where the service is accessed is stored in one or more associated bindingTemplate 



structures. Each bindingTemplate structure includes an element that contains the 

network address of the service and has associated with it one or more tModel 

structures that describe and uniquely identify the service. 

 When UDDI is used to store WSDL information, or pointers to WSDL files, the 

tModel should be referred to by convention as type wsdlSpec, meaning that the 

overviewDoc element is clearly identified as pointing to a WSDL service interface 

definition. 

 For UDDI, WSDL contents are split into two major elements the interface file and the 

implementation file. 

The Hertz reservation system web service provides a concrete example of how UDDI and 

WSDL works together. Here is the <tModel> for this web service: 

 


