
 

 

 
 

 

 
 

3.1 Framing: 

UNIT – III 

 

To provide service to the network layer, the data link layer must use the service 

provided to it by the physical layer. What the physical layer does is accept a raw bit stream 

and attempt to deliver it to the destination. This bit stream is not guaranteed to be error free. 

The number of bits received may be less than, equal to, or more than the number of bits 

transmitted, and they may have different values. It is up to the data link layer to detect and, if 

necessary, correct errors. The usual approach is for the data link layer to break the bit stream 

up into discrete frames and compute the checksum for each frame. When a frame arrives at 

the destination, the checksum is recomputed. If the newly computed checksum is different 

from the one contained in the frame, the data link layer knows that an error has occurred and 

takes steps to deal with it (e.g., discarding the bad frame and possibly also sending back an 

error report). 

Breaking the bit stream up into frames is more difficult than it at first appears. One way to 

achieve this framing is to insert time gaps between frames, much like the spaces between 

words in ordinary text. However, networks rarely make any guarantees about timing, so it is 

possible  these  gaps  might  be  squeezed  out  or  other  gaps  might  be  inserted  during 

transmission. Since it is too risky to count on timing to mark the start and end of each frame, 

other methods have been devised. We will look at four methods: 

1. Character count. 
 

2. Flag bytes with byte stuffing. 
 

3. Starting and ending flags, with bit stuffing. 
 

4. Physical layer coding violations. 
 

The first framing method uses a field in the header to specify the number of characters in the 

frame. When the data link layer at the destination sees the character count, it knows how 

many characters follow and hence where the end of the frame is. This technique is shown in 

Fig.3.1(a) for four frames of sizes 5, 5, 8, and 8 characters, respectively. 



 

 

 
 

 
 

 

Fig.3.1 A character stream. (a) Without errors. (b) With one error. 
 

The trouble with this algorithm is that the count can be garbled by a transmission error. For 

example, if the character count of 5 in the second frame of Fig. 3.1(b) becomes a 7, the 

destination will get out of synchronization and will be unable to locate the start of the next 

frame. Even if the checksum is incorrect so the destination knows that the frame is bad, it still 

has no way of telling where the next frame starts. Sending a frame back to the source asking 

for a retransmission does not help either, since the destination does not know how many 

characters to skip over to get to the start of the retransmission. For this reason, the character 

count method is rarely used anymore. 

The second framing method gets around the problem of resynchronization after an error by 

having each frame start and end with special bytes. In the past, the starting and ending bytes 

were different, but in recent years most protocols have used the same byte, called a flag byte, 

as both the starting and ending delimiter, as shown in Fig. 3.2(a) as FLAG. In this way, if the 

receiver ever loses synchronization, it can just search for the flag byte to find the end of the 

current frame. Two consecutive flag bytes indicate the end of one frame and start of the next 

one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.2 (a) A frame delimited by flag bytes (b) Four examples of byte sequences 

before and after byte stuffing. 



 

 

A serious problem occurs with this method when binary data, such as object programs or 

floating-point numbers, are being transmitted. It may easily happen that the flag byte's bit 

pattern occurs in the data. This situation will usually interfere with the framing. One way to 

solve this problem is to have the sender's data link layer insert a special escape byte (ESC) 

just before each ''accidental'' flag byte in the data. The data link layer on the receiving end 

removes the escape byte before the data are given to the network layer. This technique is 

called byte stuffing or character stuffing. Thus, a framing flag byte can be distinguished from 

one in the data by the absence or presence of an escape byte before it. 

Of course, the next question is: What happens if an escape byte occurs in the middle of the 

data? The answer is that it, too, is stuffed with an escape byte. Thus, any single escape byte is 

part of an escape sequence, whereas a doubled one indicates that a single escape occurred 

naturally in the data. Some examples are shown in Fig. 3.3(b). In all cases, the byte sequence 

delivered after de stuffing is exactly the same as the original byte sequence. 

The byte-stuffing scheme depicted in Fig. 3.3 is a slight simplification of the one used in the 

PPP protocol that most home computers use to communicate with their Internet service 

provider. 

 

A major disadvantage of using this framing method is that it is closely tied to the use of 8-bit 

characters. Not all character codes use 8-bit characters. For example UNICODE uses 16-bit 

characters, As networks developed, the disadvantages of embedding the character code length 

in the framing mechanism became more and more obvious, so a new technique had to be 

developed to allow arbitrary sized characters. 

The new technique allows data frames to contain an arbitrary number of bits and allows 

character codes with an arbitrary number of bits per character. It works like this. Each frame 

begins and ends with a special bit pattern, 01111110 (in fact, a flag byte). Whenever the 

sender's data link layer encounters five consecutive 1s in the data, it automatically stuffs a 0 

bit into the outgoing bit stream. This bit stuffing is analogous to byte stuffing, in which an 

escape byte is stuffed into the outgoing character stream before a flag byte in the data. 

When the receiver sees five consecutive incoming 1 bits, followed by a 0 bit, it automatically 

de stuffs (i.e., deletes) the 0 bit. Just as byte stuffing is completely transparent to the network 

layer in both computers, so is bit stuffing. If the user data contain the flag pattern, 01111110, 

this flag is transmitted as 011111010 but stored in the receiver's memory as 01111110. 

 



 

 

 
 
 
 
 

 

Figure 3.3 Bit stuffing. (a) The original data. (b) The data as they appear on the 

line. (c) The data as they are stored in the receiver's memory after destuffing. 
 

 
 

With bit stuffing, the boundary between two frames can be unambiguously recognized by the 

flag pattern. Thus, if the receiver loses track of where it is, all it has to do is scan the input for 

flag sequences, since they can only occur at frame boundaries and never within the data. The 

last method of framing is only applicable to networks in which the encoding on the physical 

medium contains some redundancy. For example, some LANs encode 1 bit of data by using 2 

physical bits. Normally, a 1 bit is a high-low pair and a 0 bit is a low-high pair. The scheme 

means that every data bit has a transition in the middle, making it easy for the receiver to 

locate the bit boundaries. The combinations high-high and low-low are not used for data but 

are used for delimiting frames in some protocols. 

 

As a final note on framing, many data link protocols use combination of a character 

count with one of the other methods for extra safety. When a frame arrives, the count field is 

used to locate the end of the frame. Only if the appropriate delimiter is present at that position 

and the checksum is correct is the frame accepted as valid. Otherwise, the input stream is 

scanned for the next delimiter. 

 
3.2 Error correction and detection at the data link layer. 

 

3.2.1 Error-Correcting Codes: 
 

Network designers have developed two basic strategies for dealing with errors. One way is to 

include enough redundant information along with each block of data sent, to enable the 

receiver to deduce what the transmitted data must have been. The other way is to include only 

enough redundancy to allow the receiver to deduce that an error occurred, but not which 

error, and have it request a retransmission. The former strategy uses error-correcting codes 

and the latter uses error-detecting codes. The use of error-correcting codes is often referred to 

as forward error correction. 

Each of these techniques occupies a different ecological niche. On channels that are highly 

reliable, such as fiber, it is cheaper to use an error detecting code and just retransmit the 

occasional block found to be faulty. However, on channels such as wireless links that make 

many errors, it is better to add enough redundancy to each block for the receiver to be able to 



 

 

figure out what the original block was, rather than relying on a retransmission, which itself 

may be in error. 

To understand how errors can be handled, it is necessary to look closely at what an error 

really is. Normally, a frame consists of m data (i.e., message) bits and r redundant, or check, 

bits. Let the total length be n (i.e., n = m + r). An n-bit unit containing data and check bits is 

often referred to as an n-bit codeword. 

Given any two code words, say, 10001001 and 10110001, it is possible to determine how 

many corresponding bits differ. In this case, 3 bits differ. To determine how many bits differ, 

just exclusive OR the two code words and count the number of 1 bits in the result, for 

example: 

The number of bit positions in which two code words differ is called the Hamming distance. 

Its significance is that if two codewords are a Hamming distance d apart, it will require d 

single-bit errors to convert one into the other. 

In most data transmission applications, all 2m possible data messages are legal, but due to the 

way the check bits are computed, not all of the 2n possible codewords are used. Given the 

algorithm for computing the check bits, it is possible to construct a complete list of the legal 

codewords, and from this list find the two codewords whose Hamming distance is minimum. 

This distance is the Hamming distance of the complete code. The error-detecting and error 

correcting properties of a code depend on its Hamming distance. To detect d errors, you need 

a distance d + 1 code because with such a code there is no way that d single-bit errors can 

change a valid codeword into another valid codeword. When the receiver sees an invalid 

codeword, it can tell that a transmission error has occurred. Similarly, to correct d errors, you 

need a distance 2d + 1 code because that way the legal codewords are so far apart that even 

with d changes, the original codeword is still closer than any other codeword, so it can be 

uniquely determined. As a simple example of an error-detecting code, consider a code in 

which a single parity b appended to the data. The parity bit is chosen so that the number of 1 

bits in the codeword is even (or odd). For example, when 1011010 is sent in even parity, a bit 

is added to the end to make it 10110100. With odd parity 1011010 becomes 10110101. A 

code with a single parity bit has a distance 2, since any single-bit error produces a codeword 

with the wrong parity. It can be used to detect single errors. 

As a simple example of an error-correcting code, consider a code with only four valid 

codewords: 0000000000, 0000011111, 1111100000, and 1111111111 
 

This code has a distance 5, which means that it can correct double errors. If the codeword 
 

0000000111 arrives, the receiver knows that the original must have been 0000011111. If, 



 

 

 
 

however, a triple error changes 0000000000 into 0000000111, the error will not be corrected 

properly. 

Imagine that we want to design a code with m message bits and r check bits that will allow all 

single errors to be corrected. Each of the 2m legal messages has n illegal codewords at a 

distance 1 from it. These are formed by systematically inverting each of the n bits in the n-bit 

codeword formed from it. Thus, each of the 2m legal messages requires n + 1 bit patterns 

dedicated to it. 

Since the total number of bit patterns is 2n, we must have (n + 1)2m ≤ 2n. 

Using n = m + r, this requirement becomes (m + r + 1) ≤ 2r. Given m, this puts a lower limit 

on the number of check bits needed to correct single errors. This theoretical lower limit can, 

in fact, be achieved using a method due to Hamming (1950). 

The bits of the codeword are numbered consecutively, starting with bit 1 at the left end, bit 2 

to its immediate right, and so on. The bits that are powers of 2 (1, 2, 4, 8, 16, etc.) are check 

bits. The rest (3, 5, 6, 7, 9, etc.) are filled up with the m data bits. Each check bit forces the 

parity of some collection of bits, including itself, to be even (or odd). A bit may be included 

in several parity computations. To see which check bits the data bit in position k contributes 

to, rewrite k as a sum of powers of 2.For example, 11 = 1 + 2 + 8 and 29 = 1 + 4 + 8 + 16. A 

bit is checked by just those check bits occurring in its expansion (e.g., bit 11 is checked by 

bits 1, 2, and 8). When a codeword arrives, the receiver initializes a counter to zero. It then 

examines each check bit, k (k = 1, 2, 4, 8 ...), to see if it has the correct parity. If not, the 

receiver adds k to the counter. If the counter is zero after all the check bits have been 

examined (i.e., if they were all correct), the codeword is accepted as valid. If the counter is 

nonzero, it contains the number of the incorrect bit. For example, if check bits 1, 2, and 8 are 

in error, the inverted bit is 11, because it is the only one checked by bits 1, 2, and 8. Figure 

4.1 shows some 7-bit ASCII characters encoded as 11-bit codewords using a Hamming code. 

Remember that the data are found in bit positions 3, 5, 6, 7, 9, 10, and 11. 



 

 

 
 

 

Fig.4.1. Use of a Hamming code to correct burst errors 
 
 
 
 

Hamming codes can only correct single errors. However, there is a trick that can be used to 

permit Hamming codes to correct burst errors. A sequence of k consecutive code words is 

arranged as a matrix, one codeword per row. Normally, the data would be transmitted one 

codeword at a time, from left to right. To correct burst errors, the data should be transmitted 

one column at a time, starting with the leftmost column. When all k bits have been sent, the 

second column is sent, and so on, as indicated in Fig.4.1. When the frame arrives at the 

receiver, the matrix is reconstructed, one column at a time. If a burst error of length k occurs, 

at most 1 bit in each of the k codewords will have been affected, but the Hamming code can 

correct one error per codeword, so the entire block can be restored. This method uses kr 

check bits to make blocks of km data bits immune to a single burst error of length k or less. 

3.2.2 Error-Detecting Codes: 
 

Error-correcting codes are widely used on wireless links, which are notoriously noisy and 

error prone when compared to copper wire or optical fibers. Without error-correcting codes, 

it would be hard to get anything through. However, over copper wire or fiber, the error rate is 

much lower, so error detection and retransmission is usually more efficient there for dealing 

with the occasional error. As a simple example, consider a channel on which errors are 

isolated and the error rate is 10-6 per bit. Let the block size be 1000 bits. To provide error 

correction for 1000-bit blocks, 10 check bits are needed; a megabit of data would require 

10,000 check bits. To merely detect a block with a single 1-bit error, one parity bit per block 

will suffice. Once every 1000 blocks, an extra block (1001 bits) will have to be transmitted. 

The total overhead for the error detection + retransmission method is only 2001 bits per 

megabit of data, versus 10,000 bits for a Hamming code. 

If a single parity bit is added to a block and the block is badly garbled by a long burst error, 

the probability that the error will be detected is only 0.5, which is hardly acceptable. 
 

The odds can be improved considerably if each block to be sent is regarded as rectangular 

matrix n bits wide and k bits high, as described above. A parity bit is computed separately for 

each column and affixed to the matrix as the last row. The matrix is then transmitted one row 

at a time. When the block arrives, the receiver checks all the parity bits. If any one of them is 

wrong, the receiver requests a retransmission of the block. Additional retransmissions are 



 

 

requested as needed until an entire block is received without any parity errors. This method 

can detect a single burst of length n, since only 1 bit per column will be changed. A burst of 

length n + 1 will pass undetected, however, if the first bit is inverted, the last bit is inverted, 

and all the other bits are correct. (A burst error does not imply that all the bits are wrong; it 

just implies that at least the first and last are wrong.) If the block is badly garbled by a long 

burst or by multiple shorter bursts, the probability that any of the n columns will have the 

correct parity, by accident, is 0.5, so the probability of a bad block being accepted when it 

should not be is 2-n. Although the above cheme may sometimes be adequate, in practice, 

another method is in widespread use: the olynomial code, also known as a CRC (Cyclic 

Redundancy Check). 

Polynomial codes are based upon treating bit strings as representations of polynomials with 

coefficients of 0 and 1 only. A k-bit frame is regarded as the coefficient list for a polynomial 

with k terms, ranging from xk-1 to x0. Such a polynomial is said to be of degree k - 1. The 

highorder (leftmost) bit is the coefficient of xk-1; the next bit is the coefficient of xk-2, and 

so on. For example, 110001 has 6 bits and thus represent a six-term polynomial with 

coefficients 1, 1, 0, 0, 0, and 1: x5 + x4 + x0. 

Polynomial arithmetic is done modulo 2, according to the rules of algebraic field theory. 

There are no carries for addition or borrows for subtraction. Both addition and subtraction are 

identical to exclusive OR. For example: Long division is carried out the same way as it is in 

binary except that the subtraction is done modulo 2, as above. A divisor is said ''to go into'' a 

dividend if the dividend has as many bits as the divisor. When the polynomial code method is 

employed, the sender and receiver must agree upon a generator polynomial, G(x), in advance. 

Both the high-and low-order bits of the generator must be 1. To compute the checksum for 

some frame with m bits, corresponding to the polynomial M(x), the frame must be longer 

than the generator polynomial. The idea is to append a checksum to the end of the frame in 

such a way that the polynomial represented by the checksummed frame is divisible by G(x). 

When the receiver gets the checksummed frame, it tries dividing it by G(x). If there is a 

remainder, there has been a transmission error. 

The algorithm for computing the checksum is as follows: 
 

1. Let r be the degree of G(x). Append r zero bits to the low-order end of the frame so it now 

contains m + r bits and corresponds to the polynomial xr M(x). 
 

2. Divide the bit string corresponding to G(x) into the bit string corresponding to xr M(x), 

using modulo 2 division. 



 

 

 
 

3. Subtract the remainder (which is always r or fewer bits) from the bit string corresponding 

to xr M(x) using modulo 2 subtractions. The result is the checksummed frame to be 

transmitted. Call its polynomial T(x). 

Figure illustrates the calculation for a frame 1101011011 using the generator G(x) = x4 + x+ 

1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.5.1. Calculation of the polynomial code checksum 



 

 

3.3 Elementary Data Link Layer Protocols 
 

3.3.1 An Unrestricted Simplex Protocol: 
 

As an initial example we will consider a protocol that is as simple as it can be. Data are 

transmitted in one direction only. Both the transmitting and receiving network layers are 

always ready. Processing time can be ignored. Infinite buffer space is available. And best of 

all, the communication channel between the data link layers never damages or loses frames. 

This thoroughly unrealistic protocol, which we will nickname ''utopia'' . 

The protocol consists of two distinct procedures, a sender and a receiver. The sender runs in 

the data link layer of the source machine, and the receiver runs in the data link layer of the 

destination machine. No sequence numbers or acknowledgements are used here, so 

MAX_SEQ is not needed. The only event type possible is frame_arrival (i.e., the arrival of an 

undamaged frame). 

The sender is in an infinite while loop just pumping data out onto the line as fast as it can. 

The body of the loop consists of three actions: go fetch a packet from the (always obliging) 

network layer, construct an outbound frame using the variable s, and send the frame on its 

way. Only the info field of the frame is used by this protocol, because the other fields have to 

do with error and flow control and there are no errors or flow control restrictions here. The 

receiver is equally simple. Initially, it waits for something to happen, the only possibility 

being the arrival of an undamaged frame. Eventually, the frame arrives and the procedure 

wait_for_event returns, with event set to frame_arrival (which is ignored anyway). The call to 

from_physical_layer removes the newly arrived frame from the hardware buffer and puts it in 

the variable r, where the receiver code can get at it. Finally, the data portion is passed on to 

the network layer, and the data link layer settles back to wait for the next frame, effectively 

suspending itself until the frame arrives. 

 

3.3.2 A Simplex Stop-and-Wait Protocol: 
 

The main problem we have to deal with here is how to prevent the sender from flooding the 

receiver with data faster than the latter is able to process them. In essence, if the receiver 

requires a time Δt to execute from_physical_layer plus to_network_layer, the sender must 

transmit at an average rate less than one frame per time Δt. Moreover, if we assume that no 

automatic buffering and queuing are done within the receiver's hardware, the sender must 

never transmit a new frame until the old one has been fetched by from_physical_layer, lest 

the new one overwrite the old one. In certain restricted circumstances (e.g., synchronous 

transmission and a receiving data link layer fully dedicated to processing the one input line), 



 

 

it might be possible for the sender to simply insert a delay into protocol 1 to slow it down 

sufficiently to keep from swamping the receiver. However, more usually, each data link layer 

will have several lines to attend to, and the time interval between a frame arriving and its 

being processed may vary considerably. If the network designers can calculate the worst-case 

behavior of the receiver, they can program the sender to transmit so slowly that even if every 

frame suffers the maximum delay, there will be no overruns. The trouble with this approach 

is that it is too conservative. It leads to a bandwidth utilization that is far below the optimum, 

unless the best and worst cases are almost the same (i.e., the variation in the data link layer's 

reaction time is small). 

A more general solution to this dilemma is to have the receiver provide feedback to 

the sender. After having passed a packet to its network layer, the receiver sends a little 

dummy frame back to the sender which, in effect, gives the sender permission to transmit the 

next frame. After having sent a frame, the sender is required by the protocol to bide its time 

until  the  little  dummy  (i.e.,  acknowledgement)  frame  arrives.  Using  feedback  from  the 

receiver to let the sender know when it may send more data is an example of the flow control 

mentioned earlier. 

Protocols   in   which   the   sender   sends   one   frame   and   then   waits   for   an 

acknowledgement before proceeding are called stop-and-wait. 

 

3.3.3 A Simplex Protocol for a Noisy Channel: 
 

Protocols in which the sender waits for a positive acknowledgement before advancing 

to the next data item are often called PAR (Positive Acknowledgement with Retransmission) 

or ARQ (Automatic Repeat reQuest). Like protocol 2, this one also transmits data only in one 

direction. 

 

4.1 Sliding Window Protocols: 
 

In  the  previous  protocols,  data  frames  were  transmitted  in  one  direction  only.  In  most 

practical situations, there is a need for transmitting data in both directions. One way of 

achieving fullduplex data transmission is to have two separate communication channels and 

use each one for simplex data traffic (in different directions). If this is done, we have two 

separate physical circuits, each with a ''forward'' channel (for data) and a ''reverse'' channel 

(for acknowledgements). In both cases the bandwidth of the reverse channel is almost entirely 

wasted. In effect, the user is paying for two circuits but using only the capacity of one. A 

better idea is to use the same circuit for data in both directions. After all, in protocols 2 and 3 

it was already being used to transmit frames both ways, and the reverse channel has the same 



 

 

 
 

capacity as the forward channel. In this model the data frames from A to B are intermixed 

with the acknowledgement frames from A to B. By looking at the kind field in the header of 

an incoming frame, the receiver can tell whether the frame is data or acknowledgement. 

Although interleaving data and control frames on the same circuit is an improvement 

over having two separate physical circuits, yet another improvement is possible. When a data 

frame arrives, instead of immediately sending a separate control frame, the receiver restrains 

itself and waits until the network layer passes it the next packet. The acknowledgement is 

attached to the outgoing data frame (using the ack field in the frame header). In effect, the 

acknowledgement gets a free ride on the next outgoing data frame. The technique of 

temporarily delaying outgoing acknowledgements so that they can be hooked onto the next 

outgoing  data  frame  is  known  as  piggybacking.  The  principal  advantage  of  using 

piggybacking over having distinct acknowledgement frames is a better use of the available 

channel bandwidth. The ack field in the frame header costs only a few bits, whereas a 

separate frame would need a header, the acknowledgement, and a checksum. In addition, 

fewer frames sent means fewer ''frame arrival'' interrupts, and perhaps fewer buffers in the 

receiver, depending on how the receiver's software is organized. In the next protocol to be 

examined, the piggyback field costs only 1 bit in theframe  header. It         rarely  costs 

more   than     a          few      bits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8.A sliding window of size 1, with a 3-bit sequence number (a) Initially (b) 

After the first frame has been sent (c) After the first frame has been received (d) 

After the first acknowledgement has been received. 

Since frames currently within the sender's window may ultimately be lost or damaged in 

transit, the sender must keep all these frames in its memory for possible retransmission. Thus, 



 

 

if the maximum window size is n, the sender needs n buffers to hold the unacknowledged 

frames. If the window ever grows to its maximum size, the sending data link layer must 

forcibly shut off the network layer until another buffer becomes free. The receiving data link 

layer's window corresponds to the frames it may accept.  Any frame falling outside the 

window is discarded without comment. When a frame whose sequence number is equal to the 

lower edge of the window is received, it is passed to the network layer, an acknowledgement 

is generated, and the window is rotated by one. Unlike the sender's window, the receiver's 

window always remains at its initial size. Note that a window size of 1 means that the data 

link layer only accepts frames in order, but for larger windows this is not so. The network 

layer, in contrast, is always fed data in the proper order, regardless of the data link layer's 

window size. Figure 8 shows an example with a maximum window size of 1. Initially, no 

frame are outstanding, so the lower and upper edges of the sender’s window are equal, but as 

time goes on, the situation progresses as shown. 

 

4.1.1 A One-Bit Sliding Window Protocol: 
 

Before tackling the general case, let us first examine a sliding window protocol with a 

maximum window size of 1. Such a protocol uses stop-and-wait since the sender transmits a 

frame and waits for its acknowledgement before sending the next one. Figure 9.1 depicts such 

a protocol. Like the others, it starts out by defining some variables. Next_frame_to_send tells 

which frame the sender is trying to send. Similarly, frame_expected tells which frame the 

receiver is expecting. In both cases, 0 and 1 are the only possibilities. 

Under normal circumstances, one of the two data link layers goes first and transmits the first 

frame. In other words, only one of the data link layer programs should contain the 

to_physical_layer and start_timer procedure calls outside the main loop. In the event that both 

data link layers start off simultaneously, a peculiar situation arises, as discussed later. The 

starting machine fetches the first packet from its network layer, builds a frame from it, and 

sends it. When this (or any) frame arrives, the receiving data link layer checks to see if it is a 

duplicate, just as in protocol 3. If the frame is the one expected, it is passed to the network 

layer and the receiver's window is slid up. The acknowledgement field contains the number 

of the last frame received without error. If this number agrees with the sequence number of 

the frame the sender is trying to send, the sender knows it is done with the frame stored in 

buffer and can fetch the next packet from its network layer. If the sequence number disagrees, 

it must continue trying to send the same frame. Whenever a frame is received, a frame is also 

sent back. Now let us examine protocol 4 to see how resilient it is to pathological scenarios. 



 

 

 
 

Assume that computer A is trying to send its frame 0 to computer B and that B is trying to 

send its frame 0 to A. Suppose that A sends frame to B, but A's timeout interval is a little too 

short. Consequently, A may time out repeatedly, sending a series of identical frames, all with 

seq = 0 and ack = 1. 

When the first valid frame arrives at computer B, it will be accepted and 

frame_expected will be set to 1. All the subsequent frames will be rejected because B is now 

expecting frames with sequence number 1, not 0. Furthermore, since all the duplicates have 

ack = 1 and B is still waiting for an acknowledgement of 0, B will not fetch a new packet 

from its network layer. After every rejected duplicate comes in, B sends A a frame containing 

seq = 0 and ack = 0. Eventually, one of these arrives correctly at A, causing A to begin 

sending the next packet. No combination of lost frames or premature timeouts can cause the 

protocol to deliver duplicate packets to either network layer, to skip a packet, or to deadlock. 

However, a peculiar situation arises if both sides simultaneously send an initial packet. This 

synchronization difficulty is illustrated by Fig.9.2. In part (a), the normal operation of the 

protocol is shown. In (b) the peculiarity is illustrated. If B waits for A's first frame before 

sending one of its own, the sequence is as shown in (a), and every frame is accepted. 

However, if A and B simultaneously initiate communication, their first frames cross, and the 

data link layers then get into situation (b). In (a) each frame arrival brings a new packet for 

the network layer; there are no duplicates. In (b) half of the frames contain duplicates, even 

though there are no transmission errors. Similar situations can occur as a result of premature 

timeouts, even when one side clearly starts first. In fact, if multiple premature timeouts occur, 

frames may be sent three        or        more   times. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.9.2 Two scenarios for protocol 4 (a) Normal case (b) Abnormal case. The notation is 

(seq, ack, packet number). An asterisk indicates where a network layer accepts a packet. 



 

 

4.1.2 Selective repeat: 
 

A Protocol Using Go Back N: 
 

Until now we have made the tacit assumption that the transmission time required for a frame 

to arrive at the receiver plus the transmission time for the acknowledgement to come back is 

negligible. Sometimes this assumption is clearly false. In these situations the long round-trip 

time can have important implications for the efficiency of the bandwidth utilization. As an 

example, consider a 50-kbps satellite channel with a 500-msec round-trip propagation delay. 

Let 

us imagine trying to use protocol 4 to send 1000-bit frames via the satellite. At t = 0 the 

sender starts sending the first frame. At t = 20 msec the frame has been completely sent. Not 

until t = 270 msec has the frame fully arrived at the receiver, and not until t = 520 msec has 

the acknowledgement arrived back at the sender, under the best of circumstances (no waiting 

in the receiver and a short acknowledgement frame). This means that the sender was blocked 

during 500/520 or 96 percent of the time. In other words, only 4 percent of the available 

bandwidth was used. Clearly, the combination of a long transit time, high bandwidth, and 

short frame length is disastrous in terms of efficiency. The problem described above can be 

viewed as a consequence of the rule requiring a sender to wait for an acknowledgement 

before sending another frame. If we relax that restriction, much better efficiency can be 

achieved. Basically, the solution lies in allowing the sender to transmit up to w frames before 

blocking, instead of just 1. With an appropriate choice of w the sender will be able to 

continuously transmit frames for a time equal to the round-trip transit time without filling up 

the window. In the example above, w should be at least 26. The sender begins sending frame 

0 as before. By the time it has finished sending 26 frames, at t = 520, the acknowledgement 

for frame 0 will have just arrived. Thereafter, acknowledgements arrive every 20 msec, so the 

sender always gets permission to continue just when it needs it. At all times, 25 or 26 

unacknowledged frames are outstanding. Put in other terms, the sender's maximum window 

size is 26. 

The need for a large window on the sending side occurs whenever the product of bandwidth x 

round-trip-delay is large. If the bandwidth is high, even for a moderate delay, the sender will 

exhaust its window quickly unless it has a large window. If the delay is high (e.g., on a 

geostationary satellite channel), the sender will exhaust its window even for a moderate 

bandwidth. The product of these two factors basically tells what the capacity of the pipe is, 

and  the sender  needs  the ability to  fill  it  without  stopping in  order  to  operate  at  peak 

efficiency. This technique is known as pipelining. If the channel capacity is b bits/sec, the 



 

 

frame size l bits, and the round-trip propagation time R sec, the time required to transmit a 

single frame is l/b sec. After the last bit of a data frame has been sent, there is a delay of R/2 

before that bit arrives at the receiver and another delay of at least R/2 for the 

acknowledgement to come back, for a total delay of R. In stop-and-wait the line is busy for 

l/band idle for R, giving 

If l < bR, the efficiency will be less than 50 percent. Since there is always a nonzero delay for 

the acknowledgement to propagate back, pipelining can, in principle, be used to keep the line 

busy during this interval, but if the interval is small, the additional complexity is not worth 

the trouble. Pipelining frames over an unreliable communication channel raises some serious 

issues. First, what happens if a frame in the middle of a long stream is damaged or lost? 

Large numbers of succeeding frames will arrive at the receiver before the sender even finds 

out that anything is wrong. When a damaged frame arrives at the receiver, it obviously should 

be discarded, but what should the receiver do with all the correct frames following it? 

Remember that the receiving data link layer is obligated to hand packets to the network layer 

in sequence. In Two basic approaches are available for dealing with errors in the presence of 

pipelining. One way, called go back n, is for the receiver simply to discard all subsequent 

frames, sending no acknowledgements for the discarded frames. This strategy corresponds to 

a receive window of size 1. In other words, the data link layer refuses to accept any frame 

except the next one it must give to the network layer. If the sender's window fills up before 

the timer runs out, the pipeline will begin to empty. Eventually, the sender will time out and 

retransmit all unacknowledged frames in order, starting with the damaged or lost one. This 

approach can waste a lot of bandwidth if the error rate is high. 

In Fig.10.1 (a) we see go back n for the case in which the receiver's window is large. 

Frames 0 and 1 are correctly received and acknowledged. Frame 2, however, is damaged or 

lost. The sender, unaware of this problem, continues to send frames until the timer for frame 

2 expires. Then it backs up to frame 2 and starts all over with it, sending 2, 3, 4, etc. all over 

again. The other general strategy for handling errors when frames are pipelined is called 

selective repeat. When it is used, a bad frame that is received is discarded, but good frames 

received after it are buffered. When the sender times out, only the oldest unacknowledged 

frame is retransmitted. If that frame arrives correctly, the receiver can deliver to the network 

layer, in sequence, all the frames it has buffered. Selective repeat is often combined with 

having the receiver send a negative acknowledgement (NAK) when it detects an error, for 

example, when it receives a checksum error or a frame out of sequence. NAKs stimulate 

retransmission before the corresponding timer expires and thus improve performance. In 

Fig.10.1 (b), frames 0 and 1 are again correctly received and acknowledged and frame 2 is 

lost. When frame 3 arrives at the receiver, the data link layer there notices that is has missed a 

frame, so it sends back a NAK for 2 but buffers 3. When frames 4 and 5 arrive, they, too, are 

buffered by the data link layer instead of being passed to the network layer. Eventually, the 

NAK 2 gets back to the sender, which 



 

 

immediately resends frame 2. When that arrives, the data link layer now has 2, 3, 4, and 5 and 

can pass all of them to the network layer in the correct order. It can also acknowledge all 

frames up to and including 5, as shown in the figure. If the NAK should get lost, eventually 

the sender will time out for frame 2 and send it (and only it) of its own accord, but that may 

be a quite a while later. In effect, the NAK speeds up the retransmission of one specific 

frame. 

Selective repeat corresponds to a receiver window larger than 1. Any  frame within the 

window may be accepted and buffered until all the preceding ones have been passed to the 

network layer. This approach can require large amounts of data link layer memory if the 

window is large. These two alternative approaches are trade-offs between bandwidth and data 

link layer buffer space. Depending on which resource is scarcer, one or the other can be used. 

Figure 10.2 shows a pipelining protocol in which the receiving data link layer only accepts 

frames in order; frames following an error are discarded. In this protocol, for the first time we 

have dropped the assumption that the network layer always has an infinite supply of packets 

to send. When the network layer has a packet it wants to send, it can cause a 

network_layer_ready event to happen. However, to enforce the flow control rule of no more 

than MAX_SEQ unacknowledged frames outstanding at any time, the data link layer must be 

able to keep the network layer from bothering it with more work. The library procedures 

enable_network_layer and disable_network_layer do this job. 

 

 
A Protocol Using Selective Repeat 

 

This protocol works well if errors are rare, but if the line is poor, it wastes a lot of bandwidth 

on retransmitted frames. An alternative strategy for handling errors is to allow the receiver to 

accept and buffer the frames following a damaged or lost one. Such a protocol does not 

discard frames merely because an earlier frame was damaged or lost. In this protocol, both 

sender  and  receiver  maintain  a  window  of  acceptable  sequence  numbers.  The  sender's 

window size starts out at 0 and grows to some predefined maximum, MAX_SEQ. The 

receiver's window, in contrast, is always fixed in size and equal to MAX_SEQ. The receiver 

has a buffer reserved for each sequence number within its fixed window. Associated with 

each buffer is a bit (arrived) telling whether the buffer is full or empty. Whenever a frame 

arrives, its sequence number is checked by the function between to see if it falls within the 

window. If so and if it has not already been received, it is accepted and stored. This action is 

taken without regard to whether or not it contains the next 

packet expected by the network layer. Of course, it must be kept within the data link layer 



 

 

 
 

and not passed to the network layer until all the lower-numbered frames have already been 

delivered to the network layer in the correct order. 

 

 
4.2 HDLC—High-Level Data Link Control: 

 

These are a group of closely related protocols that are a bit old but are still heavily used. They 

are all derived from the data link protocol first used in the IBM mainframe world: SDLC 

(Synchronous Data Link Control) protocol. After developing SDLC, IBM submitted it to 

ANSI and ISO for acceptance as U.S. and international standards, respectively. ANSI 

modified it to become ADCCP (Advanced Data Communication Control Procedure), and ISO 

modified it to become HDLC (High-level Data Link Control). CCITT then adopted and 

modified HDLC for its LAP (Link Access Procedure) as part of the X.25 network interface 

standard but later modified it again to LAPB, to make it more compatible with a later version 

of HDLC. The nice thing about standards is that you have so many to choose from. 

Furthermore, if you do not like any of them, you can just wait for next year's model. These 

protocols are based on the same principles. All are bit oriented, and all use bit stuffing for 

data transparency. They differ only in minor, but nevertheless irritating, ways. The discussion 

of bit-oriented protocols that follows is intended as a general introduction. For the specific 

details of any one protocol, please consult the appropriate definition. 

All the bit-oriented protocols use the frame structure shown in Fig.11.1. The Address field is 

primarily of importance on lines with multiple terminals, where it is used to identify one of 

the terminals. For point-to-point lines, it is sometimes used to distinguish commands from 

responses. 

 

 
 
 
 
 
 

Fig.11.1. Frame format for bit-oriented protocols 
 

The Control field is used for sequence numbers, acknowledgements, and other purposes, as 

discussed below. 
 

The  Data  field  may  contain  any  information.  It  may  be  arbitrarily  long,  although  the 

efficiency  of  the  checksum  falls  off  with  increasing  frame  length  due  to  the  greater 

probability of multiple burst errors. 

 

 

The Checksum field is a cyclic redundancy code. The frame is delimited with another flag 

sequence (01111110). On idle point-to-point lines, flag sequences are transmitted 



 

 

 
 

continuously. The minimum frame contains three fields and totals 32 bits, excluding the flags 

on either end. There are three kinds of frames: Information, Supervisory, and Unnumbered. 

The contents of the Control field for these three kinds are shown in Fig.11.2. The 

protocol uses a sliding window, with a 3-bit sequence number. Up to seven unacknowledged 

frames may be outstanding at any instant. The Seq field in Fig.11.2 (a) is the frame sequence 

number. The Next field is a piggybacked acknowledgement. However, all the protocols 

adhere to the convention that instead of piggybacking the number of the last frame received 

correctly,  they use the  number of the  first  frame not  yet  received  (i.e.,  the next  frame 

expected). The choice of using the last frame received or the next frame expected is arbitrary; 

it does not matter which convention is used, provided that it is used consistently. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.11.2 Control field of (a) an information frame, (b) a supervisory frame, (c) an 

unnumbered frame 

The P/F bit stands for Poll/Final. It is used when a computer (or concentrator) is polling a 

group of terminals. When used as P, the computer is inviting the terminal to send data. All the 

frames sent by the terminal, except the final one, have the P/F bit set to P. The final one is set 

to F. In some of the protocols, the P/F bit is used to force the other machine to send a 

Supervisory  frame  immediately  rather  than  waiting  for  reverse  traffic  onto  which  to 

piggyback the window information. The bit also has some minor uses in connection with the 

Unnumbered frames. 

The various kinds of Supervisory frames are distinguished by the Type field. Type 0 is an 

acknowledgement frame (officially called RECEIVE READY) used to  indicate the next 

frame expected. This frame is used when there is no reverse traffic to use for piggybacking. 

 
Type 1 is a negative acknowledgement  frame (officially called REJECT). It is used to 

indicate that a transmission error has been detected. The Next field indicates the first frame in 

sequence not received correctly (i.e., the frame to be retransmitted). The sender is required to 

retransmit all outstanding frames starting at Next. This strategy is similar to our protocol 5 

rather than our protocol 6. 



 

 

Type 2 is RECEIVE NOT READY. It acknowledges all frames up to but not including Next, 

just as RECEIVE READY does, but it tells the sender to stop sending. RECEIVE NOT 

READY  is  intended  to  signal  certain  temporary  problems  with  the  receiver,  such  as  a 

shortage of buffers, and not as an alternative to the sliding window flow control. When the 

condition has been repaired, the receiver sends a RECEIVE READY, REJECT, or certain 

control frames. 

Type 3 is the SELECTIVE REJECT. It calls for retransmission of only the frame specified. 

In this sense it is like our protocol 6 rather than 5 and is therefore most useful when the 

sender's window size is half the sequence space size, or less. Thus, if a receiver wishes to 

buffer out- of-sequence frames for potential future use, it can force the retransmission of any 

specific frame using Selective Reject. HDLC and ADCCP allow this frame type, but SDLC 

and LAPB do not allow it (i.e., there is no Selective Reject), and type 3 frames are undefined. 

The third class of frame is the Unnumbered frame. It is sometimes used for control purposes 

but can also carry data when unreliable connectionless service is called for. The various bit- 

oriented protocols differ considerably here, in contrast with the other two kinds, where they 

are nearly identical. Five bits are available to indicate the frame type, but not all 32 

possibilities are used. 

 

 
4.3 PPP-The Point-to-Point Protocol: 

 

The  Internet  needs  a point-to-point  protocol  for a variety of purposes,  including 

router-to-router traffic and home user-to-ISP traffic. This protocol is PPP (Point-to-Point 

Protocol), which is defined in RFC 1661 and further elaborated on in several other RFCs 

(e.g., RFCs 1662 and 1663). PPP handles error detection, supports multiple protocols, allows 

IP addresses to be negotiated at connection time, permits authentication, and has many other 

features. 

PPP provides three features: 
 

1. A framing method that unambiguously delineates the end of one frame and the start of the 

next one. The frame format also handles error detection. 

 
 

2. A  link  control  protocol  for  bringing  lines  up,  testing  them,  negotiating  options,  and 

bringing them down again gracefully when they are no longer needed. This protocol is called 

LCP (Link Control Protocol). It supports synchronous and asynchronous circuits and byte- 

oriented and bit-oriented encodings. 

3. A way to negotiate network-layer options in a way that is independent of the network layer 



 

 

 
 

protocol  to  be  used.  The  method  chosen  is  to  have  a  different  NCP  (Network  Control 
 

Protocol) for each network layer supported. 
 

To see how these pieces fit together, let us consider the typical scenario of a home 

user calling up an Internet service provider to make a home PC a temporary Internet host. 

The PC first calls the provider's router via a modem. After the router's modem has answered 

the phone and established a physical connection, the PC sends the router a series of LCP 

packets in the payload field of one or more PPP frames. These packets and their responses 

select the PPP parameters to be used. 

Once the parameters have been agreed upon, a series of NCP packets are sent to configure the 

network layer. Typically, the PC wants to run a TCP/IP protocol stack, so it needs an IP 

address. There are not enough IP addresses to go around, so normally each Internet provider 

gets a block of them and then dynamically assigns one to each newly attached PC for the 

duration of its login session. If a provider owns n IP addresses, it can have up to n machines 

logged in simultaneously, but its total customer base may be many times that. The NCP for IP 

assigns the IP address. At this point, the PC is now an Internet host and can send and receive 

IP packets, just as hardwired hosts can. When the user is finished, NCP tears down the 

network layer connection and frees up the IP address. Then LCP shuts down the data link 

layer connection. Finally, the computer tells the modem to hang up the phone, releasing the 

physical layer connection. 

 

 
The PPP frame format was chosen to closely resemble the HDLC frame format, since there 

was no reason to reinvent the wheel. The major difference between PPP and HDLC is that 

PPP is character oriented rather than bit oriented. In particular, PPP uses byte stuffing on 

dial-up modem lines, so all frames are an integral number of bytes. It is not possible to send a 

frame consisting of 30.25 bytes, as it is with HDLC. Not only can PPP frames be sent over 

dialup telephone lines, but they can also be sent over SONET or true bit-oriented HDLC lines 

(e.g., for router-router connections). The PPP frame format is shown in Fig.13. 

 
 
 
 
 
 
 

 
Fig.13. The PPP full frame format for unnumbered mode operation 

 

All PPP frames begin with the standard HDLC flag byte (01111110), which is byte stuffed if 

it occurs within the payload field. Next comes the Address field, which is always set to the 



 

 

binary value 11111111 to indicate that all stations are to accept the frame. Using this value 

avoids the issue of having to assign data link addresses. 

 

 
The Address field is followed by the Control field, the default value of which is 00000011. 

This value indicates an unnumbered frame. In other words, PPP does not provide reliable 

transmission using sequence numbers and acknowledgements as the default. In noisy 

environments, such as wireless networks, reliable transmission using numbered mode can be 

used. The exact details are defined in RFC 1663, but in practice it is rarely used. Since the 

Address and Control fields are always constant in the default configuration, LCP provides the 

necessary mechanism for the two parties to negotiate an option to just omit them altogether 

and save 2 bytes per frame. 

 

 
The fourth PPP field is the Protocol field. Its job is to tell what kind of packet is in the 

Payload field. Codes are defined for LCP, NCP, IP, IPX, AppleTalk, and other protocols. 

Protocols starting with a 0 bit are network layer protocols such as IP, IPX, OSI CLNP, XNS. 

Those starting with a 1 bit are used to negotiate other protocols. These include LCP and a 

different NCP for each network layer protocol supported. The default size of the Protocol 

field is 2 bytes, but it can be negotiated down to 1 byte using LCP. The Payload field is 

variable length, up to some negotiated maximum. If the length is not negotiated using LCP 

during line setup, a default length of 1500 bytes is used. Padding may follow the payload if 

need be. After the Payload field comes the Checksum field, which is normally 2 bytes, but a 

4-byte checksum can be negotiated. 
 

In summary, PPP is a multiprotocol framing mechanism suitable for use over  modems, 

HDLC bit-serial lines, SONET, and other physical layers. It supports error detection, option 

negotiation, header compression, and, optionally, reliable transmission using an HDLC type 

frame format. 


