
GVPI COLLEGE OF ENGINEERING FOR WOMEN

1

PRINCIPLES OF

PROGRAMMING

LANGUAGES

GVP COLLEGE OF ENGINEERING FOR WOMEN

2

OBJECTIVES

• To understand and describe syntax and semantics of
programming languages

• To understand data, data types, and basic statements

• To understand call-return architecture and ways of
implementing them

• To understand object-orientation, concurrency, and
event handling in programming languages

• To develop programs in non-procedural programming
paradigms

GVP COLLEGE OF ENGINEERING FOR WOMEN

3

UNIT I

SYNTAX AND SEMANTICS
• Evolution of programming languages

• Describing syntax

– Context-free grammars

– Attribute grammars

• Describing semantics

• Lexical analysis

– Parsing

• Recursive-decent

• Bottom up parsing

GVP COLLEGE OF ENGINEERING FOR WOMEN

4

Improved background for choosing

appropriate languages

• C vs. Modula-3 vs. C++ for systems programming

• Fortran vs. APL vs. Ada for numerical computations

• Ada vs. Modula-2 for embedded systems

• Common Lisp vs. Scheme vs. Haskell for symbolic data

manipulation

• Java vs. C/CORBA for networked PC programs

GVP COLLEGE OF ENGINEERING FOR WOMEN

5

Increased ability to learn new languages

• Easy to walk down language family tree

• Concepts are similar across languages

• If you think in terms of iteration, recursion,
abstraction (for example), you will find it
easier to assimilate the syntax and semantic
details of a new language than if you try to
pick it up in a vacuum

• Analogy to human languages: good grasp of
grammar makes it easier to pick up new
languages

GVP COLLEGE OF ENGINEERING FOR WOMEN

6

Increased capacity to express ideas

Figure out how to do things in languages that don't support them:

• lack of suitable control structures in Fortran

• use comments and programmer discipline for control structures

• lack of recursion in Fortran, CSP, etc

• write a recursive algorithm then use mechanical recursion
elimination (even for things that aren't quite tail recursive)

• lack of named constants and enumerations in Fortran
• use variables that are initialized once, then never changed

• lack of modules in C and Pascal
• use comments and programmer discipline

• lack of iterators in just about everything
• fake them with (member?) functions

GVP COLLEGE OF ENGINEERING FOR WOMEN

7

What makes a language successful?
• Easy to learn (BASIC, Pascal, LOGO, Scheme)

• Easy to express things, easy use once fluent,
"powerful” (C, Common Lisp, APL, Algol-68,
Perl)

• Easy to implement (BASIC, Forth)

• Possible to compile to very good (fast/small) code
(Fortran)

• Backing of a powerful sponsor (COBOL, PL/1,
Ada, Visual Basic)

• Wide dissemination at minimal cost (Pascal,
Turing, Java)

GVP COLLEGE OF ENGINEERING FOR WOMEN

8

What makes a successful language?

The following key characteristics:

– Simplicity and readability

– Clarity about binding

– Reliability

– Support

– Abstraction

– Orthogonality

– Efficient implementation

GVP COLLEGE OF ENGINEERING FOR WOMEN

9

Simplicity and Readability

• Small instruction set

– E.g., Java vs Scheme

• Simple syntax

– E.g., C/C++/Java vs Python

• Benefits:

– Ease of learning

– Ease of programming

GVP COLLEGE OF ENGINEERING FOR WOMEN

10

A language element is bound to a property at

the time that property is defined for it.

So a binding is the association between an

object and a property of that object

– Examples:

• a variable and its type

• a variable and its value

– Early binding takes place at compile-time

– Late binding takes place at run time

Clarity about Binding

GVP COLLEGE OF ENGINEERING FOR WOMEN

11

Reliability

A language is reliable if:

– Program behavior is the same on different

platforms

• E.g., early versions of Fortran

– Type errors are detected

• E.g., C vs Haskell

– Semantic errors are properly trapped

• E.g., C vs C++

– Memory leaks are prevented

• E.g., C vs Java

GVP COLLEGE OF ENGINEERING FOR WOMEN

12

Language Support

• Accessible (public domain)

compilers/interpreters

• Good texts and tutorials

• Wide community of users

• Integrated with development environments

(IDEs)

GVP COLLEGE OF ENGINEERING FOR WOMEN

13

Abstraction in Programming

• Data

– Programmer-defined types/classes

– Class libraries

• Procedural

– Programmer-defined functions

– Standard function libraries

GVP COLLEGE OF ENGINEERING FOR WOMEN

14

Orthogonality

A language is orthogonal if its features are

built upon a small, mutually independent set

of primitive operations.

• Fewer exceptional rules = conceptual

simplicity

– E.g., restricting types of arguments to a function

• Tradeoffs with efficiency

GVP COLLEGE OF ENGINEERING FOR WOMEN

15

Efficient implementation

• Embedded systems

– Real-time responsiveness (e.g., navigation)

– Failures of early Ada implementations

• Web applications

– Responsiveness to users (e.g., Google search)

• Corporate database applications

– Efficient search and updating

• AI applications

– Modeling human behaviors

GVP COLLEGE OF ENGINEERING FOR WOMEN

16

• Why do we have programming

languages?

– way of thinking---way of expressing

algorithms

• languages from the user's point of view

– abstraction of virtual machine---way of

specifying what you want the hardware to

do without getting down into the bits

• languages from the implementor's point of

view

What is a language for?

GVP COLLEGE OF ENGINEERING FOR WOMEN

17

Genealogy of common high-level programming languages

GVP COLLEGE OF ENGINEERING FOR WOMEN

18

Internal representation of two LISP lists

GVP COLLEGE OF ENGINEERING FOR WOMEN

19

Genealogy of ALGOL 60

GVP COLLEGE OF ENGINEERING FOR WOMEN

20

Genealogy of COBOL

GVP COLLEGE OF ENGINEERING FOR WOMEN

21

Genealogy of BASIC

GVP COLLEGE OF ENGINEERING FOR WOMEN

22

Genealogy of PL/I

GVP COLLEGE OF ENGINEERING FOR WOMEN

23

Genealogy of SIMULA 67

GVP COLLEGE OF ENGINEERING FOR WOMEN

24

Genealogy of ALGOL 68

GVP COLLEGE OF ENGINEERING FOR WOMEN

25

Genealogy of Pascal

GVP COLLEGE OF ENGINEERING FOR WOMEN

26

Genealogy of C

GVP COLLEGE OF ENGINEERING FOR WOMEN

27

Genealogy of Ada

GVP COLLEGE OF ENGINEERING FOR WOMEN

28

Genealogy of Smalltalk

GVP COLLEGE OF ENGINEERING FOR WOMEN

29

History

• Early History : The first programmers

• The 1940s: Von Neumann and Zuse

• The 1950s: The First Programming Language

• The 1960s: An Explosion in Programming
languages

• The 1970s: Simplicity, Abstraction, Study

• The 1980s: Consolidation and New Directions

• The 1990s: Internet and the Web

• The 2000s: tbd

GVP COLLEGE OF ENGINEERING FOR WOMEN

30

Early History: The First

Programmer
• Jacquard loom of early 1800s

– Translated card patterns into cloth designs

• Charles Babbage’s analytical engine (1830s &
40s)
Programs were cards with data and operations

• Ada Lovelace – first programmer

“The engine can arrange and combine its
numerical quantities exactly as if they were
letters or any other general symbols; And in
fact might bring out its results in algebraic
notation, were provision made.”

GVP COLLEGE OF ENGINEERING FOR WOMEN

31

The 1940s: Von Neumann and

Zuse
• Konrad Zuse (Plankalkul)

– in Germany - in isolation because of the war

– defined Plankalkul (program calculus) circa 1945 but

never implemented it.

– Wrote algorithms in the language, including a

program to play chess.

– His work finally published in 1972.

– Included some advanced data type features such as

• Floating point, used twos complement and hidden bits

• Arrays

• records (that could be nested)

GVP COLLEGE OF ENGINEERING FOR WOMEN

32

Plankalkul notation

A(7) := 5 * B(6)

| 5 * B => A

V | 6 7 (subscripts)

S | 1.n 1.n (data types)

GVP COLLEGE OF ENGINEERING FOR WOMEN

33

• Initial computers were programmed in raw

machine code.

• These were entirely numeric.

• What was wrong with using machine code?

Everything!

• Poor readability

• Poor modifiability

• Expression coding was tedious

• Inherit deficiencies of hardware, e.g., no

indexing or floating point numbers

Machine Code

(1940’s)

GVP COLLEGE OF ENGINEERING FOR WOMEN

34

• Short Code or SHORTCODE - John Mauchly, 1949.

• Pseudocode interpreter for math problems, on

Eckert and Mauchly’s BINAC and later on UNIVAC

I and II.

• Possibly the first attempt at a higher level language.

• Expressions were coded, left to right, e.g.:

X0 = sqrt(abs(Y0))

00 X0 03 20 06 Y0

• Some operations:
01 – 06 abs 1n (n+2)nd power

02) 07 + 2n (n+2)nd root

03 = 08 pause 4n if <= n

04 / 09 (58 print & tab

Pseudocodes

(1949)

GVP COLLEGE OF ENGINEERING FOR WOMEN

35

More Pseudocodes

Speedcoding; 1953-4
• A pseudocode interpreter for math on IBM 701, IBM 650.

• Developed by John Backus

• Pseudo ops for arithmetic and math functions

• Conditional and unconditional branching

• Autoincrement registers for array access

• Slow but still dominated by slowness of s/w math

• Interpreter left only 700 words left for user program

Laning and Zierler System - 1953
• Implemented on the MIT Whirlwind computer

• First "algebraic" compiler system

• Subscripted variables, function calls, expression translation

• Never ported to any other machine

GVP COLLEGE OF ENGINEERING FOR WOMEN

36

The 1950s: The First

Programming Language

• Pseudocodes: interpreters for assembly
language like

• Fortran: the first higher level programming
language

• COBOL: he first business oriented language

• Algol: one of the most influential programming
languages ever designed

• LISP: the first language to depart from the
procedural paradigm

• APL:

GVP COLLEGE OF ENGINEERING FOR WOMEN

37

Fortran (1954-57)

• FORmula TRANslator

• Developed at IBM under the guidance of John Backus

primarily for scientific programming

• Dramatically changed forever the way computers used

• Has continued to evolve, adding new features & concepts.

– FORTRAN II, FORTRAN IV, FORTRAN 66, FORTRAN 77, FORTRAN

90

• Always among the most efficient compilers, producing fast

code

• Still popular, e.g. for supercomputers

GVP COLLEGE OF ENGINEERING FOR WOMEN

38

FORTRAN 0 – 1954 (not implemented)

FORTRAN I - 1957

Designed for the new IBM 704, which had index registers and

floating point hardware

Environment of development:

Computers were small and unreliable

Applications were scientific

No programming methodology or tools

Machine efficiency was most important

Impact of environment on design

• No need for dynamic storage

• Need good array handling and counting loops

• No string handling, decimal arithmetic, or powerful

input/output (commercial stuff)

Fortran 0 and 1

GVP COLLEGE OF ENGINEERING FOR WOMEN

39

• Names could have up to six characters

• Post-test counting loop (DO)

• Formatted I/O

• User-defined subprograms

• Three-way selection statement (arithmetic IF)

IF (ICOUNT-1) 100, 200, 300

• No data typing statements

variables beginning with i, j, k, l, m or n were

integers, all else floating point

• No separate compilation

• Programs larger than 400 lines rarely compiled

correctly, mainly due to IBM 704’s poor reliability

• Code was very fast

• Quickly became widely used

Fortran I Features

GVP COLLEGE OF ENGINEERING FOR WOMEN

40

Fortran II, IV and 77

FORTRAN II - 1958

• Independent compilation

• Fix the bugs

FORTRAN IV - 1960-62
• Explicit type declarations

• Logical selection (IF) statement

• Subprogram names could be parameters

• ANSI standard in 1966

FORTRAN 77 - 1978
• Character string handling

• Logical loop control (WHILE) statement

• IF-THEN-ELSE statement

GVP COLLEGE OF ENGINEERING FOR WOMEN

41

Added many features of more modern programming
languages, including

• Pointers

• Recursion

• CASE statement

• Parameter type checking

• A collection of array operations, DOTPRODUCT,
MATMUL, TRANSPOSE, etc

• dynamic allocations and deallocation of arrays

• a form of records (called derived types)

• Module facility (similar Ada’s package)

Fortran 90 (1990)

GVP COLLEGE OF ENGINEERING FOR WOMEN

42

COBOL

• COmmon Business Oriented Language

• Principal mentor: (Rear Admiral Dr.) Grace Murray

Hopper (1906-1992)

• Based on FLOW-MATIC which had such features as:

• Names up to 12 characters, with

embedded hyphens

• English names for arithmetic operators

• Data and code were completely separate

• Verbs were first word in every statement

• CODASYL committee (Conference on Data Systems

Languages) developed a programming language by the

name of COBOL

GVP COLLEGE OF ENGINEERING FOR WOMEN

43

First CODASYL Design Meeting - May 1959

Design goals:

• Must look like simple English

• Must be easy to use, even if that means it will be less

powerful

• Must broaden the base of computer users

• Must not be biased by current compiler problems

Design committee were all from computer manufacturers

and DoD branches

Design Problems: arithmetic expressions? subscripts?

Fights among manufacturers

COBOL

GVP COLLEGE OF ENGINEERING FOR WOMEN

44

COBOL

Contributions:

- First macro facility in a high-level language

- Hierarchical data structures (records)

- Nested selection statements

- Long names (up to 30 characters), with hyphens

- Data Division

Comments:

• First language required by DoD; would have

failed without DoD

• Still the most widely used business applications

language

GVP COLLEGE OF ENGINEERING FOR WOMEN

45

• Beginner's All purpose Symbolic Instruction Code

• Designed by Kemeny & Kurtz at Dartmouth for the GE

225 with the goals:

• Easy to learn and use for non-science students and as a path to
Fortran and Algol

• Must be ”pleasant and friendly"

• Fast turnaround for homework

• Free and private access

• User time is more important than computer time

• Well-suited for implementation on first PCs, e.g., Gates

and Allen’s 4K Basic interpreter for the MITS Altair

personal computer (circa 1975)

• Current popular dialects: Visual BASIC

BASIC (1964)

GVP COLLEGE OF ENGINEERING FOR WOMEN

46

LISP (1959)
• LISt Processing language (Designed at MIT by McCarthy)

• AI research needed a language that:

• Process data in lists (rather than arrays)

• Handles symbolic computation (rather than numeric)

• One universal, recursive data type: the s-expression

• An s-expression is either an atom or a list of zero or more

s-expressions

• Syntax is based on the lambda calculus

• Pioneered functional programming

• No need for variables or assignment

• Control via recursion and conditional expressions

• Status

• Still the dominant language for AI

• COMMON LISP and Scheme are contemporary dialects

• ML, Miranda, and Haskell are related languages

GVP COLLEGE OF ENGINEERING FOR WOMEN

47

Environment of development:

1. FORTRAN had (barely) arrived for IBM 70x

2. Many other languages were being developed, all for

specific machines

3. No portable language; all were machine-dependent

4. No universal language for communicating

algorithms

ACM and GAMM met for four days for design

- Goals of the language:

1. Close to mathematical notation

2. Good for describing algorithms

3. Must be translatable to machine code

Algol

GVP COLLEGE OF ENGINEERING FOR WOMEN

48

Algol 58 Features
• Concept of type was formalized

• Names could have any length

• Arrays could have any number of subscripts

• Parameters were separated by mode (in & out)

• Subscripts were placed in brackets

• Compound statements (begin ... end)

• Semicolon as a statement separator

• Assignment operator was :=

• if had an else-if clause

Comments:

•Not meant to be implemented, but variations of it were

(MAD, JOVIAL)

•Although IBM was initially enthusiastic, all support was

dropped by mid-1959

GVP COLLEGE OF ENGINEERING FOR WOMEN

49

Algol 60
Modified ALGOL 58 at 6-day meeting in Paris adding such

new features as:

• Block structure (local scope)

• Two parameter passing methods

• Subprogram recursion

• Stack-dynamic arrays

• Still no I/O and no string handling

Successes:

• The standard way to publish algorithms for over 20

years

• All subsequent imperative languages are based on it

• First machine-independent language

• First language whose syntax was formally defined

(BNF)

GVP COLLEGE OF ENGINEERING FOR WOMEN

50

Failure: Never widely used, especially in U.S.,

mostly because

1. No I/O and the character set made

programs nonportable

2. Too flexible--hard to implement

3. Entrenchment of FORTRAN

4. Formal syntax description

5. Lack of support by IBM

Algol 60

(1960)

GVP COLLEGE OF ENGINEERING FOR WOMEN

51

APL

• A Programming Language

• Designed by K.Iverson at Harvard in late

1950’s

• A language for programming mathematical

computations

– especially those using matrices

• Functional style and many whole array

operations

• Drawback is requirement of special keyboard

GVP COLLEGE OF ENGINEERING FOR WOMEN

52

The 1960s: An Explosion in

Programming Languages

• The development of hundreds of programming languages

• PL/I designed in 1963-4

– supposed to be all purpose

– combined features of FORTRAN, COBOL and Algol 60 and more!

– translators were slow, huge and unreliable

– some say it was ahead of its time......

• Algol 68

• SNOBOL

• Simula

• BASIC

GVP COLLEGE OF ENGINEERING FOR WOMEN

53

PL/I
• Computing situation in 1964 (IBM's point of view)

Scientific computing

• IBM 1620 and 7090 computers

• FORTRAN

• SHARE user group

Business computing

• IBM 1401, 7080 computers

• COBOL

• GUIDE user group

• IBM’s goal: develop a single computer (IBM 360) and a

single programming language (PL/I) that would be good

for scientific and business applications.

• Eventually grew to include virtually every idea in current

practical programming languages.

GVP COLLEGE OF ENGINEERING FOR WOMEN

54

PL/I
PL/I contributions:

1. First unit-level concurrency

2. First exception handling

3. Switch-selectable recursion

4. First pointer data type

5. First array cross sections

Comments:

• Many new features were poorly designed

• Too large and too complex

• Was (and still is) actually used for both scientific

and business applications

• Subsets (e.g. PL/C) developed which were more

manageable

GVP COLLEGE OF ENGINEERING FOR WOMEN

55

Simula (1962-67)

• Designed and built by Ole-Johan Dahl and Kristen

Nygaard at the Norwegian Computing Centre (NCC) in

Oslo between 1962 and 1967

• Originally designed and implemented as a language for

discrete event simulation

• Based on ALGOL 60

Primary Contributions:

• Coroutines - a kind of subprogram

• Classes (data plus methods) and objects

• Inheritance

• Dynamic binding

=> Introduced the basic ideas that developed into object-

oriented programming.

GVP COLLEGE OF ENGINEERING FOR WOMEN

56

From the continued development of ALGOL 60, but it is not

a superset of that language

• Design is based on the concept of orthogonality

• Contributions:

• User-defined data structures

• Reference types

• Dynamic arrays (called flex arrays)

• Comments:

• Had even less usage than ALGOL 60

• Had strong influence on subsequent languages,

especially Pascal, C, and Ada

Algol 68

GVP COLLEGE OF ENGINEERING FOR WOMEN

57

The 1970s: Simplicity,

Abstraction, Study
• Algol-W - Nicklaus Wirth and C.A.R.Hoare

– reaction against 1960s

– simplicity

• Pascal

– small, simple, efficient structures

– for teaching program

• C - 1972 - Dennis Ritchie

– aims for simplicity by reducing restrictions of the type

system

– allows access to underlying system

– interface with O/S - UNIX

GVP COLLEGE OF ENGINEERING FOR WOMEN

58

Pascal (1971)

• Designed by Wirth, who quit the ALGOL 68

committee (didn't like the direction of that

work)

• Designed for teaching structured programming

• Small, simple

• Introduces some modest improvements, such as

the case statement

• Was widely used for teaching programming ~

1980-1995.

GVP COLLEGE OF ENGINEERING FOR WOMEN

59

C (1972-)

• Designed for systems programming at Bell

Labs by Dennis Ritchie and colleagues.

• Evolved primarily from B, but also ALGOL

68

• Powerful set of operators, but poor type

checking

• Initially spread through UNIX and the

availability of high quality, free compilers,

especially gcc.

GVP COLLEGE OF ENGINEERING FOR WOMEN

60

Other descendants of ALGOL

• Modula-2 (mid-1970s by Niklaus Wirth at ETH)

• Pascal plus modules and some low-level

features designed for systems programming

• Modula-3 (late 1980s at Digital & Olivetti)

• Modula-2 plus classes, exception handling,

garbage collection, and concurrency

• Oberon (late 1980s by Wirth at ETH)

• Adds support for OOP to Modula-2

• Many Modula-2 features were deleted (e.g., for

statement, enumeration types, with statement,

non-integer array indices)

GVP COLLEGE OF ENGINEERING FOR WOMEN

61

The 1980s: Consolidation and

New Paradigms

• Ada

– US Department of Defence

– European team lead by Jean Ichbiah. (Sam Lomonaco was

also on the ADA team)

• Functional programming

– Scheme, ML, Haskell

• Logic programming

– Prolog

• Object-oriented programming

– Smalltalk, C++, Eiffel

GVP COLLEGE OF ENGINEERING FOR WOMEN

62

Ada

• In study done in 73-74 it was determined that the
DoD was spending $3B annually on software, over
half on embedded computer systems.

• The Higher Order Language Working Group was
formed and initial language requirements compiled
and refined in 75-76 and existing languages
evaluated.

• In 1997, it was concluded that none were suitable,
though Pascal, ALGOL 68 or PL/I would be a good
starting point.

• Language DoD-1 was developed through a series of
competitive contracts.

GVP COLLEGE OF ENGINEERING FOR WOMEN

63

Ada

• Renamed Ada in May 1979.

• Reference manual, Mil. Std. 1815 approved 10

December 1980. (Ada Bryon was born 10/12/1815)

• “mandated” for use in DoD work during late 80’s and

early 90’s.

• Ada95, a joint ISO and ANSI standard, accepted in

February 1995 and included many new features.

• The Ada Joint Program Office (AJPO) closed 1

October 1998 (Same day as ISO/IEC 14882:1998

(C++) published!)

GVP COLLEGE OF ENGINEERING FOR WOMEN

64

Ada
Contributions:

1. Packages - support for data abstraction

2. Exception handling - elaborate

3. Generic program units

4. Concurrency - through the tasking model

Comments:

• Competitive design

• Included all that was then known about software

engineering and language design

• First compilers were very difficult; the first really

usable compiler came nearly five years after the

language design was completed

• Very difficult to mandate programming technology

GVP COLLEGE OF ENGINEERING FOR WOMEN

65

• Developed at the University of Aix

Marseille, by Comerauer and Roussel, with

some help from Kowalski at the University

of Edinburgh

• Based on formal logic

• Non-procedural

• Can be summarized as being an intelligent

database system that uses an inferencing

process to infer the truth of given queries

Logic Programming:

Prolog

GVP COLLEGE OF ENGINEERING FOR WOMEN

66

Functional Programming

• Common Lisp: consolidation of LISP dialects
spurred practical use, as did the development of Lisp
Machines.

• Scheme: a simple and pure LISP like language used
for teaching programming.

• Logo: Used for teaching young children how to
program.

• ML: (MetaLanguage) a strongly-typed functional
language first developed by Robin Milner in the 70’s

• Haskell: polymorphicly typed, lazy, purely
functional language.

GVP COLLEGE OF ENGINEERING FOR WOMEN

67

Smalltalk (1972-80)
• Developed at Xerox PARC by Alan Kay and

colleagues (esp. Adele Goldberg) inspired by

Simula 67

• First compilation in 1972 was written on a bet to

come up with "the most powerful language in the

world" in "a single page of code".

• In 1980, Smalltalk 80, a uniformly object-oriented

programming environment became available as the

first commercial release of the Smalltalk language

• Pioneered the graphical user interface everyone

now uses

• Industrial use continues to the present day

GVP COLLEGE OF ENGINEERING FOR WOMEN

68

• Developed at Bell Labs by Stroustrup

• Evolved from C and SIMULA 67

• Facilities for object-oriented programming, taken

partially from SIMULA 67, added to C

• Also has exception handling

• A large and complex language, in part because it

supports both procedural and OO programming

• Rapidly grew in popularity, along with OOP

• ANSI standard approved in November, 1997

C++ (1985)

GVP COLLEGE OF ENGINEERING FOR WOMEN

69

Eiffel

•Eiffel - a related language that supports OOP

- (Designed by Bertrand Meyer - 1992)

- Not directly derived from any other

language

- Smaller and simpler than C++, but still has

most of the power

GVP COLLEGE OF ENGINEERING FOR WOMEN

70

1990’s: the Internet and Web

During the 90’s, Object-oriented languages (mostly

C++) became widely used in practical applications

The Internet and Web drove several phenomena:

– Adding concurrency and threads to existing

languages

– Increased use of scripting languages such as Perl

and Tcl/Tk

– Java as a new programming language

GVP COLLEGE OF ENGINEERING FOR WOMEN

71

Java
• Developed at Sun in the early 1990s

with original goal of a language for

embedded computers

• Principals: Bill Joy, James Gosling, Mike

Sheradin, Patrick Naughton

• Original name, Oak, changed for copyright reasons

• Based on C++ but significantly simplified

• Supports only OOP

• Has references, but not pointers

• Includes support for applets and a form of concurrency

(i.e. threads)

GVP COLLEGE OF ENGINEERING FOR WOMEN

72

The future
• In the 60’s, the dream was a single all-purpose

language (e.g., PL/I, Algol)

• The 70s and 80s dream expressed by Winograd
(1979)

“Just as high-level languages allow the programmer to
escape the intricacies of the machine, higher level
programming systems can provide for manipulating
complex systems. We need to shift away from algorithms
and towards the description of the properties of the
packages that we build. Programming systems will be
declarative not imperative”

• Will that dream be realised?

• Programming is not yet obsolete

GVP COLLEGE OF ENGINEERING FOR WOMEN

73
73

LEXICAL ANALYSIS

• ROLE OF THE LEXICAL ANALYZER
– The main function is to read the input and produce the output as

a sequence of tokens that the parser uses for syntax analysis

– The command namely “get next token” is used by the lexical
analyzer to read the input characters until it can identify the next
token

– It also performs the user interface task’s

– It also correlate error messages from compiler. The two phases
of LA are

• Scanning (simple task)

• Lexical Analysis (complex task)

GVP COLLEGE OF ENGINEERING FOR WOMEN

74
74

Tokens Patterns and Lexemes

• Token represents a logically cohesive sequence of characters

• The set of string is described by a rule called pattern associated with

the token

• The character sequence forming a token is called lexeme for the

token

• Tokens are keywords, operators, identifiers, constants and

punctuations

• Pattern is a rule describing the set of lexeme that can represent a

particular token in the program

• Lexeme matched by the pattern for the token represents strings of

characters

GVP COLLEGE OF ENGINEERING FOR WOMEN

75
75

TOKEN LEXEME PATTERN

const const const

Relation <,<=,=,>,>=,<> < or <= or = or > or

>= or <>

Num 3.14,6.2 Any constant

Id Pi, count Letter followed by

letters and digits

GVP COLLEGE OF ENGINEERING FOR WOMEN

76

Specification of Patterns for Tokens:

Regular Definitions

• Example:

letter  A | B | … | Z | a | b | … | z

digit  0 | 1 | … | 9

id  letter (letter | digit)*

GVP COLLEGE OF ENGINEERING FOR WOMEN

77

• We frequently use the following shorthands:
r+ = rr*

r? = r | 

[a-z] = a | b | c | … | z

• For example:

digit  [0-9]
num  digit+ (. digit+)? (E (+|-)? digit+)?

GVP COLLEGE OF ENGINEERING FOR WOMEN

78

Regular Definitions and Grammars

stmt  if expr then stmt

| if expr then stmt else stmt

| 
expr  term relop term

| term

term  id

| num

if  if

then  then

else  else

relop  < | <= | <> | > | >= | =

id  letter (letter | digit)*

num  digit+ (. digit+)? (E (+|-)? digit+)?

Grammar

Regular definitions

GVP COLLEGE OF ENGINEERING FOR WOMEN

79

Implementing a Scanner Using Transition

Diagrams

0 21

6

3

4

5

7

8

return(relop, LE)

return(relop, NE)

return(relop, LT)

return(relop, EQ)

return(relop, GE)

return(relop, GT)

start <

=

>

=

>

=

other

other

*

*

9
start letter

10 11
*other

letter or digit

return(gettoken(),

install_id())

relop  < | <= | <> | > | >= | =

id  letter (letter | digit)*

GVP COLLEGE OF ENGINEERING FOR WOMEN

80

Transition Graph

• An NFA can be diagrammatically represented

by a labeled directed graph called a transition

graph

0
start a

1 32
b b

a

b

S = {0,1,2,3}

 = {a,b}

s0 = 0

F = {3}

GVP COLLEGE OF ENGINEERING FOR WOMEN

81

Transition Table

• The mapping  of an NFA can be represented

in a transition table

State
Input

a

Input

b

0 {0, 1} {0}

1 {2}

2 {3}

(0,a) = {0,1}

(0,b) = {0}

(1,b) = {2}

(2,b) = {3}

GVP COLLEGE OF ENGINEERING FOR WOMEN

82

N(r2)N(r1)

From Regular Expression to NFA (Thompson’s

Construction)

fi 

f
a

i

fi

N(r1)

N(r2)

start

start

start


 



fi
start

N(r) fi
start







a

r1 | r2

r1r2

r*  

GVP COLLEGE OF ENGINEERING FOR WOMEN

83

Combining the NFAs of a Set of Regular

Expressions

2
a

1
start

6
a

3
start

4 5
b b

8
b

7
start

a b

a { action1 }

abb { action2 }

a*b+ { action3 }

2
a

1

6
a

3 4 5
b b

8
b

7

a b

0
start







GVP COLLEGE OF ENGINEERING FOR WOMEN

84

Simulating the Combined NFA Example 1

2
a

1

6
a

3 4 5
b b

8
b

7

a b

0
start







0

1

3

7

2

4

7

7 8

Must find the longest match:

Continue until no further moves are possible

When last state is accepting: execute action

action1

action2

action3

a ba a none

action3

GVP COLLEGE OF ENGINEERING FOR WOMEN

85

PARSING TECHNIQUES

PARSER

TOP DOWN PARSER BOTTOM UP PARSER

BACKTRACKING

or

RECURSIVE

DESCENT PARSER

PREDICTIVE

PARSER

SHIFT REDUCE

PARSER
LR PARSER

SLR

PARSER
LALR

PARSER

CLR

PARSER

OPERATOR

PRECEDENCE

PARSING

GVP COLLEGE OF ENGINEERING FOR WOMEN

86

TOP DOWN Vs BOTTOM UP
SNo TOP DOWN PARSER BOTTOM UP PARSER

1 Parse tree can be built from

root to leaves

Parse tree can be built from leaves to

root

2 This is simple to implement This is complex

3 Less efficient. Various

problems that occurs during top

down techniques are ambiguity,

left recursion, left factoring

When the bottom up parser handles

ambiguous grammar conflicts occur in

parse table

4 It is applicable to small class of

languages

It is applicable to a broad class of

languages

5 Parsing techniques i. Recursive

descent parser ii. Predictive

parser

Parsing techniques. i. shift reduce, ii.

Operator precedence, iii. LR parser

GVP COLLEGE OF ENGINEERING FOR WOMEN

87

RECURSIVE DESCENT PARSER

• A parser that uses collection of recursive

procedures for parsing the given input string is

called Recursive Descent parser

• The CFG is used to build the recursive routines

• The RHS of the production rule is directly

converted to a program.

• For each NT a separate procedure is written and

body of the procedure is RHS of the

corresponding NT.

GVP COLLEGE OF ENGINEERING FOR WOMEN

88

Basic steps of construction of RD Parser

• The RHS of the rule is directly converted into
program code symbol by symbol

1. If the input symbol is NT then a call to the
procedure corresponding the non-terminal is made.

2. If the input is terminal then it is matched with the
lookahead from input. The lookahead pointer has to
be advanced on matching of the input symbol

3. If the production rule has many alternates then all
these alternates has to be combined into a single body
of procedure.

4. The parser should be activated by a procedure
corresponding to the start symbol.

GVP COLLEGE OF ENGINEERING FOR WOMEN

89

Example
A  aBe | cBd | C

B  bB | 

C  f

proc C { match the current token with f,

proc A { and move to the next token; }

case of the current token {

a: - match the current token with a,

and move to the next token; proc B {

- call B; case of the current token {

- match the current token with e, b: - match the current token with b,

and move to the next token; and move to the next token;

c: - match the current token with c, - call B

and move to the next token; ε : do nothing

- call B; }

- match the current token with d, }

and move to the next token;

f: - call C

}

}

GVP COLLEGE OF ENGINEERING FOR WOMEN

90

Predictive Parsing - LL(1) Parser

• This top-down parsing algorithm is of non-

recursive type.

• In this type parsing table is built

• For LL(1)

Uses only one input symbol tp predict the parsing

process

Left most derivation

Input scanned from left to right

GVP COLLEGE OF ENGINEERING FOR WOMEN

91

• The data structures used by LL(1) are

– Input buffer (store the input tokens)

– Stack (hold left sentential form)

– Parsing table (row of NT, column of T)

Input token

Stack Output

Parsing table

LL(1) parser

GVP COLLEGE OF ENGINEERING FOR WOMEN

92

LL(1) Parser
input buffer

– our string to be parsed. We will assume that its end is marked with a special
symbol $.

output

– a production rule representing a step of the derivation sequence (left-most
derivation) of the string in the input buffer.

stack

– contains the grammar symbols

– at the bottom of the stack, there is a special end marker symbol $.

– initially the stack contains only the symbol $ and the starting symbol S.
$S  initial stack

– when the stack is emptied (ie. only $ left in the stack), the parsing is completed.

parsing table

– a two-dimensional array M[A,a]

– each row is a non-terminal symbol

– each column is a terminal symbol or the special symbol $

– each entry holds a production rule.

GVP COLLEGE OF ENGINEERING FOR WOMEN

93

LL(1) Parser – Parser Actions

• The symbol at the top of the stack (say X) and the current symbol in the

input string (say a) determine the parser action.

• There are four possible parser actions.

1. If X and a are $ → parser halts (successful completion)

2. If X and a are the same terminal symbol (different from $)

→ parser pops X from the stack, and moves the next symbol in the input

buffer.

3. If X is a non-terminal

→ parser looks at the parsing table entry M[X,a]. If M[X,a] holds a

production rule XY1Y2...Yk, it pops X from the stack and pushes

Yk,Yk-1,...,Y1 into the stack. The parser also outputs the production rule

XY1Y2...Yk to represent a step of the derivation.

4. none of the above → error

– all empty entries in the parsing table are errors.

– If X is a terminal symbol different from a, this is also an error case.

GVP COLLEGE OF ENGINEERING FOR WOMEN

94

• The construction of predictive LL(1) parser is

based on two very important functions and those

are FIRST and FOLLOW.

• For the construction

1. Computation of FIRST and FOLLOW function

2. Construction the predictive parsing table using

FIRST and FOLLOW functions

3. Parse the input string with the help of predictive

parsing table

GVP COLLEGE OF ENGINEERING FOR WOMEN

95

FIRST function
• FIRST(α) is a set of terminal symbols that are

first symbols appearing at RHS in derivation
of α.

• Following are the rules used to compute the
FIRST functions
1. if the terminal symbol a then FIRST(a) ={a}

2. If there is a rule X→ε then FIRST(X) = {ε}

3. If X is a nonterminal and X->Y1Y2…Yk is a production

for some k>=1, then place a in First(X) if for some i a is in

First(Yi) and ɛ is in all of First(Y1),…,First(Yi-1) that is

Y1…Yi-1 => ɛ. if ɛ is in First(Yj) for j=1,…,k then add ɛ to

First(X).

GVP COLLEGE OF ENGINEERING FOR WOMEN

96

FOLLOW function
• FOLLOW(A) is defined as the set of terminal symbols that

appear immediately to the right of A.

• FOLLOW(A) = { a | S →α Aaβ where α and β are some

grammar symbols may be terminal or non-terminal}

• The rules for computing FOLLOW function are as given

below –

1. For the start symbol S place $ in FOLLOW(S)

2. If there is a production A→αBβ then everything in

FIRST(β) without ε is to be placed in FOLLOW(B)

3. If there is a production A →αBβ or A →αB and

FIRST(β) = {ε} then FOLLOW(A) = FOLLOW(B) or

FOLLOW(B)=FOLLOW(A). That means everything in

FOLLOW(A) is in FOLLOW(B)

GVP COLLEGE OF ENGINEERING FOR WOMEN

97

FIRST AND FOLLOW EXAMPLE

E→TE’; E’ →+TE’|ε; T →FT’;

T’→*FT’| ε; F →(E)|id.

• E→TE’; T →FT’; F →(E)|id.

• FIRST(E)=FIRST(T)=FIRST(F)

• Here, F →(E) and F→|id

• So, FIRST(F)={(, id}

• FIRST(E’) = {+,ε} since, E’ →+TE’|ε;

• FIRST(T’) = {*,ε} since, T’→*FT’|ε;

GVP COLLEGE OF ENGINEERING FOR WOMEN

98

• FOLLOW(E)
• For F→(E)

– As there is F→(E), symbol) is appears immediately after E. so) will be in
FOLLOW(E)

– By rule A→αBβ, we can map this with F →(E) then,
FOLLOW(E)=FIRST()) = {)}

• Since E is a start symbol, $ will be in FOLLOW(E)
– Hence, FOLLOW(E) = {), $}

• FOLLOW(E’)
• For E →TE’ By rule A→αBβ, we can map this with E →TE’ then

FOLLOW(E) is in FOLLOW(E’)
– FOLLOW(E’)={),$}

• For E’→+TE’ FOLLOW(E’) is in FOLLOW(E’)
– FOLLOW(E’)={),$}

• FOLLOW(T)
• For E →TE’

– By rule A → αBβ, FOLLOW(B) = {FIRST(β) – ε}, so FOLLOW(T) =
{FIRST(E’)-ε} = {+}

• For E’→ +TE’
– By rule A → αBβ, FOLLOW(T)=FOLLOW(E’). so, FOLLOW(T)={),$}

– Hence FOLLOW(T) = {+,), $}

GVP COLLEGE OF ENGINEERING FOR WOMEN

99

• FOLLOW(T’)

– For T →FT’

• By A→αBβ, then FOLLOW(T’) = FOLLOW(T) = {+,),$}

– For T → *FT’

• By A→αBβ, then FOLLOW(T’) = FOLLOW(T) = {+,),$}

• Hence FOLLOW(T’)={+,),$}

• FOLLOW(F)

– For T →FT’

• By A→αBβ, then FOLLOW(F)={FIRST(T’) – ε}

• FOLLOW(F) = {*}

– For T → *FT’

• By A→αBβ, then FOLLOW(F)=FOLLOW(T’) = {+,),$}

• Hence, FOLLOW(F) = {+, * ,) , $}

GVP COLLEGE OF ENGINEERING FOR WOMEN

100

Predictive parsing table construction

• For the rule A →α of grammar G

1. For each a in FIRST(α) create M[A,a] = A →α

where a is a terminal symbol

2. For ε in FIRST(α) create entry in M[A,b] = A

→α where b is the symbols from FOLLOW(A)

3. If ε is in FIRST(α) and $ is in FOLLOW(A) then

create entry in the table M[A,$] = A →α

4. All the remaining entries in the table M are

marked as ERROR

GVP COLLEGE OF ENGINEERING FOR WOMEN

101

PARSING TABLE

Id + * () $

E E→TE’ E→TE’

E’ E’→+TE’ E’→ ε E’→ ε

T T→ FT’ T→ FT’

T’ T’→ ε T’→ *FT’ T’→ ε T’→ ε

F F→ id F→ (E)

Lets parse the input string id+id*id using the above table. At initial configuration stack

will contain start symbol E, in the input buffer the input string is placed and ended

with $

GVP COLLEGE OF ENGINEERING FOR WOMEN

102

Stack Input Action

$E id+id*id$

$E’T id+id*id$ E → TE’

$E’T’F id+id*id$ T→FT’

$E’T’id id+id*id$ F→id

$E’T’ +id*id$

$E’ +id*id$ T’ →ε

$E’T+ +id*id$ E’ → +TE’

$E’T Id*id$

$E’T’F Id*id$ T→FT’

$E’T’id Id*id$ F→id

$E’T’ *id$

$E’T’F* *id$ T’ →FT’

$E’T’F Id$

$E’T’id Id$ F→id

$E’T’ $

$E’ $ T’ →ε

$ $ E’ → ε

GVP COLLEGE OF ENGINEERING FOR WOMEN

103

BOTTOM UP PARSING
• The input string is taken first, and we try to reduce

this string with the help of grammar and try to
obtain the start symbol

• The process of parsing halts successfully as soon
as we reach the start symbol

• Handle – pruning

– find the substring that could be reduces by appropriate
non-terminal is called handle

– Handle is the string of substring that matches the right
side of the production and we can reduce

– In other words, a process of detecting handles and using
them in reduction

GVP COLLEGE OF ENGINEERING FOR WOMEN

104

HANDLE PRUNING

• Consider the grammar E→E+E; E→id

• RMD for the string id+id+id

– E => E+E

– E=> E+E+E

– E=>E+E+id

– E=>E+id+id

– E=>id+id+id

The bold strings are called handles

GVP COLLEGE OF ENGINEERING FOR WOMEN

105

SHIFT REDUCE PARSER

• It attempts to construct parse tree from leaves
to root.

• It requires the following data structures

– The input buffer storing the input string

– A stack for storing and accessing the LHS and
RHS of rules

W$

Input buffer

$S

Stack

GVP COLLEGE OF ENGINEERING FOR WOMEN

106

PARSING OPERATIONS

• SHIFT

– Moving of the symbols from input buffer onto the stack

• REDUCE

– If the handles present in the top of the stack then reduction
of it by appropriate rule. RHS is popped and LHS is pushed

• ACCEPT

– If the stack contains start symbol only and input buffer is
empty at the same time that action is called accept

• ERROR

– A situation in which parser cannot either shift or reduce the
symbols

GVP COLLEGE OF ENGINEERING FOR WOMEN

107

• Two rules followed

– If the incoming operator has more priority than in
stack operator then perform SHIFT

– If in stack operator has same or less priority than
the priority of incoming operators then perform
REDUCE

Viable prefixes are the set of prefixes of right sentential forms that can appear on

the stack of shift/reduce parser are called viable prefixes. It is always possible to

add terminals to the end of a viable prefix to obtain a right sentential form

Consider the grammar E→ E-E; E → E*E; E → id. Perform shift-

reduce parsing of the input string id-id*id

GVP COLLEGE OF ENGINEERING FOR WOMEN

108

STACK INPUT BUFFER PARSING ACTION

$ id-id*id$ Shift

$id -id*id$ Reduce by E→ id

$E -id*id$ Shift

$E- id*id$ Shift

$E-id *id$ Reduce by E→ id

$E-E *id$ Shift

$E-E* id$ Shift

$E-E*id $ Reduce E→ id

$E-E*E $ Reduce E→ E*E

$E-E $ Reduce E→ E-E

$E $ Accept

GVP COLLEGE OF ENGINEERING FOR WOMEN

109

OPERATOR PRECEDENCE

PARSER

• A grammar G is said to be operator precedence if

it poses following properties

– No production rule on the right side is ε

– There should not be any production rule possessing

two adjacent non-terminals at the right hand side

• Parsing method

– Construct OPP relations(table)

– Identify the handles

– Implementation using stack

GVP COLLEGE OF ENGINEERING FOR WOMEN

110

• Advantage of OPP

– Simple to implement

• Disadvantages of OPP

– Operator minus has two different
precedence(unary and binary). Hence, it is hard to
handle tokens like minus sign

– This can be applicable to only small class of
grammars

• Application

– The operator precedence parsing is done in a
language having operators.

GVP COLLEGE OF ENGINEERING FOR WOMEN

111

LR Parsers

• The most powerful shift-reduce parsing (yet efficient) is:

LR(k) parsing.

left to right right-most k lookhead
scanning derivation (k is omitted  it is 1)

• LR parsing is attractive because:

– LR parsing is most general non-backtracking shift-reduce

parsing, yet it is still efficient.

– The class of grammars that can be parsed using LR methods is

a proper superset of the class of grammars that can be parsed

with predictive parsers.

LL(1)-Grammars  LR(1)-Grammars

– An LR-parser can detect a syntactic error as soon as it is

possible to do so a left-to-right scan of the input.

GVP COLLEGE OF ENGINEERING FOR WOMEN

112

LR Parsers

• LR-Parsers

– covers wide range of grammars.

– SLR – simple LR parser

– LR – most general LR parser

– LALR – intermediate LR parser (look-head

LR parser)

– SLR, LR and LALR work same (they used

the same algorithm), only their parsing

tables are different.

GVP COLLEGE OF ENGINEERING FOR WOMEN

113

LR Parsing Algorithm

Sm1

Xm

Sm-1

Xm-1

.

.

S1

X1

S0

a1 ... ai ... an $

Action Table

terminals and $
S
t four
a actions
t
e
S

Goto Table

non-terminal

s
t each item
a is a state
t
e
S

LR Parsing

Algorithm

stack

input

output

GVP COLLEGE OF ENGINEERING FOR WOMEN

114

Parsing method

• Initialize the stack with start symbol and

invokes scanner to get next token

• It determines Sj the state currently on the top

of the stack and ai the current input symbol

• It consults the parsing table for the action [Sj,

ai] which can have one of the four values

– Si means shift state I

– rj means reduce by rule j

– Accept means successful parsing is done

– Error indicates syntactical error

GVP COLLEGE OF ENGINEERING FOR WOMEN

115

Simple LR parsing (SLR) definitions

• LR(0) items

– The LR(0) item for grammar G is production rule in which symbol .

Is inserted at some position in RHS of the rule.

• Example

S→.ABC

S→A.BC

S→AB.C

S→ABC.

• Augmented grammar

– If a grammar G is having start symbol S then augmented grammar

is a new grammar G’ in which S’ is a new start symbol such that

S’→S

– The purpose this grammar is to indicate the acceptance of input.

That is when parser is about to reduce S’→S it reaches to

acceptance state

GVP COLLEGE OF ENGINEERING FOR WOMEN

116

• Kernel items

– It is a collection of items S’→.S and all the items whose dots are not at

the leftmost end of RHS of the rule

– Non-kernel items

• The collection of all the items in which . Are at the left end of RHS of

the rule

• Functions

– Closure

– Goto

– These are two important functions required to create collection of

canonical set of items

• Viable prefix-

– set of prefixes in the right sentential form of production A→α. This set

can appear on the stack during shift/reduce action

GVP COLLEGE OF ENGINEERING FOR WOMEN

117

Closure operation

• For a CFG G, if I is the set of items then the

function closure(I) can be constructed using

following rules

– Consider I is a set of canonical items and

initially every item I is added to closure(I)

– If rule A  .B is a rule in closure(I)

and there is another rule for B such as

B. then,

– Closure(I) :

• A  .B

• B.

GVP COLLEGE OF ENGINEERING FOR WOMEN

118

• This rule is applied until no more new items

can be added to closure(I).

• The meaning of rule A  .B id that

during derivation of the input string at

some point we may require strings

derivable from B as input.

• A non-terminal immediately to the

right of . Indicates that it has to be

expanded shortly

GVP COLLEGE OF ENGINEERING FOR WOMEN

119

Goto operation

• If there is a production A  .B then

goto(A  .B, B) = A  B.

• this means simply shifting of . One

position ahead over the grammar symbol(

T or NT)

• The rule A  .B is in I then the same

goto function can be written as goto(I,B)

GVP COLLEGE OF ENGINEERING FOR WOMEN

120

• Construct the SLR(1) parsing table for

1 E→E+T

2 E →T

3 T →T*F

4 T →F

5 F →(E)

6 F →id

GVP COLLEGE OF ENGINEERING FOR WOMEN

121

I0:

E’→.E

E →.E+T

E →.T

T →.T*F

T →.F

F →.(E)

F →.id

Goto(I0,E)

I1: E’→E.

E → E.+T

Goto(I0,T)

I2: E →T.

T →T.*F

Goto(I0,F)

I3: T →F.

Goto(I0,()

I4: T →(.E)

E →.E+T

E →.T

T →.T*F

T →.F

F →.(E)

F →.id

Goto(I0, id)

I5: F →id.

Goto(I2, *)

I7: T →T*.F

F →.(E)

F →.id

Goto(I4, E)

I8: F →(E.)

E →E.+T

Goto(I6, T)

I9: E →E+T.

T →T.*F

Goto(I7, F)

I10: T →T*F.

Goto(I8,))

I11: F →(E).

Goto(I1, +)

I6: E →E+.T

T →.T*F

T →.F

F →.(E)

F →.id

GVP COLLEGE OF ENGINEERING FOR WOMEN

122

• FOLLOW(E’) = {$}

• FOLLOW(E) = {+,),$}

• FOLLOW(T) = {+,*,),$}

• FOLLOW(F) = {+,*,),$}

GVP COLLEGE OF ENGINEERING FOR WOMEN

123

state id + * () $ E T F

0 s5 s4 1 2 3

1 s6 acc

2 r2 s7 r2 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

5 r6 r6 r6 r6

6 s5 s4 9 3

7 s5 s4 10

8 s6 s11

9 r1 s7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

Action Table Goto Table

GVP COLLEGE OF ENGINEERING FOR WOMEN

124

STACK INPUT

BUFFER

ACTION

TABLE

GOTO

TABLE

PARSING

ACTION

$0 Id*id*id$ [0,id]=s5 Shift

$0id5 *id+id$ [5,*]=r6 [0,f]=3 Reduce

F→id

$0F3 *id*id$ [3,*]=r4 [0,T]=2 Reduce T→F

$0T2 *id+id$ [2,*]=s7 Shift

$0T2*7 Id+id$ [7,id]=s5 Shift

$0T2*7id5 +id$ [5,+]=r6 [7,F]=10 reduce

$0T2*7F10 +id$ [10,+]=r3 [0,T]=2 Reduce

$0T2 +id$ [2,+]=r2 [0,E]=1 Reduce

$0E1 +id$ [1,=]=s6 Shift

$0E1+6 +id$ [6,id]=s5 Shift

$0E1+6ID5 $ [5,$]=r6 [6,F]=3 Reduce

$0E1+6F3 $ [3,$]=r4 [6,T]=9 Reduce

$0E1+6T9 $ [9,$]=r1 [0,E]=1 Reduce

$0E1 $ Accept accept

GVP COLLEGE OF ENGINEERING FOR WOMEN

125

CLR PARSING or LR(1)

PARSING
• Construction of canonical set of items along with lookahead

• For the grammar G initially add S’→.S in the set of item C

• For each set of items Ii in C and for each grammar symbol X

(T ot NT) add closure(Ii,X). This process is repeated by

applying goto(Ii,X) for each X in Ii such that goto(Ii,X) is not

empty and not in C. The set of items has to constructed until

no more set of items can be added to C

• The closure function can be computed as : for each item

[A→α.Xβ, a] is in I and rule [A→αX.β, a] is not in goto items

then add [A→αX.β, a] to goto items

• This process is repeated until no more set of items can be

added to the collection C

GVP COLLEGE OF ENGINEERING FOR WOMEN

126

CONSTRUCTION OF CLR PARSING TABLE

• Construct set of items C={I0,I1,I2,...In} where C is a collection of

set of LR(1) items for the input grammar G’.

• The parsing actions are based on each items Ii.

– If [A→αBβ, b] is in Ii and goto(Ii, a)=Ii then create a entry in the action

table action[Ii,a]=shift j.

– If there is a production A→α., a] in Ii then in action table

action[Ii,a]=reduce by A→α. Here A should not be S’.

– If there is a production S’ →S.,$ in Ii then action[i,$]=accept.

• The goto part of LR table can be filled as: the goto transition for

state i is considered for NT only. If goto(Ii,A)=Ij, then

goto(Ii,A)=j

• All other entries are defined as ERROR

GVP COLLEGE OF ENGINEERING FOR WOMEN

127

EXAMPLES
• Construct CLR for the grammar

E→E+E/T

T →T*F/F

F →(E)/id.

• FOLLOW(E) = {+,),$}

FIRST(E)={(,id}

• FOLLOW(T) = {+,*,),$}

FIRST(T)={(,id}

• FOLLOW(F) = {+,*,),$}

FIRST(F)={(,id}

GVP COLLEGE OF ENGINEERING FOR WOMEN

128

• Augmented

grammar

E’ → E

E →E+T

E →T

T →T*F

T →F

F →(E)

F→id

• LR(1) items

•LR(0) items

E’ →. E

E →.E+T

E →.T

T →.T*F

T →.F

F →.(E)

F→.id

•LR(1) items

E’ →.E, $

E →.E+T, $/+

E →.T, $/+

T →.T*F, $/+/*

T →.F, $/+/*

F →.(E), $/+/*

F→.id, $/+/*

GVP COLLEGE OF ENGINEERING FOR WOMEN

129

Goto(I0, E)

I1 : E’→ E. , $

E →E.+T, $/+

Goto(I0,T)

I2: E →T.,$/+

T →T.*F,$/+/*

Goto(I0,F)

I3: T →F., $/+/*

Goto(I0,()

I4: F →(.E), $/+,*

E →.E+T,)/+

E →.T,)/+

T →.T*F,)/+/*

T → .F,)/+,*

F →.(E),)/+/*

F →.id,),+,*

Goto(I0, id)

I5: F →id. , $/+/*

Goto(I1,+)

I6: E →E+.T, $/+

T →.T*F, $/+/*

T →.F, $/+/*

F →.(E), $/+/*

F →.id, $/+/*

GVP COLLEGE OF ENGINEERING FOR WOMEN

130

STAT

ES

+ * () Id $ E T F

0 S4 S5 1 2 3

1 S6 ACC

2 R2 S7 R2

3 R4 R4 R4

4 S11 S12 8 9 10

5 R6 R6 R6

6 S4 S5 13 3

7 S4 S5 14

8 S16 S15

9 R2 S17 R2

10 R4 R4 R4

GVP COLLEGE OF ENGINEERING FOR WOMEN

131

11 S11 S12 18 9 10

12 R6 R6 R6

13 R1 S7 R1

14 R3 R3 R3

15 R5 R5 R5

16 S11 S12 19 10

17 S11 S12 20

18 S16 S21

19 R1 S17 R1

20 R3 R3 R3

21 R3 R5 R5

GVP COLLEGE OF ENGINEERING FOR WOMEN

132

STACK INPUT

BUFFER

ACTION

$0 id+id*id$ Shift s5

$0id5 +id*id$ R6

$0F3 +id*id$ R4

$0T2 +id*id$ R2

$0E1 +id*id$ S6

$0E1+6 id*id$ S5

$0E1+6 id 5 *id$ R6

$0E1+6 F 3 *id$ R4

$0E1+6 T13 *id$ S7

$0E1+6T13*7 Id$ S5

$0E1+6T13*7id 5 $ R6

$0E1+6T13*7F14 $ R3

$0E1+6T13 $ R1

$0E1 $ ACC

GVP COLLEGE OF ENGINEERING FOR WOMEN

133

LALR PARSING

• Construction of LALR parsing table

• Construct LR(1) items

• Merge two states Ii and Ij if the first component are matching and

create a new state replacing one of the older states such as

Iij = Ii U Ij

• The parsing actions are based on each item Ii.

– If [A→α.aβ, b] is in Ii and goto(Ii,a)=Ij then create an entry in the action

table action[Ii,a]= shift j

– If there is a production [A→α., a] in Ii then in the action table

action[Ii,a]=reduce by A→α. Here A should not be S’.

– If there is a production S’ →S,$ in Ii then action[i,$]=accept

• The goto part : the goto transitions for state i is considered for

NTonly. If goto(Ii,A)=Ij, then goto[Ii,A]=j

• If the parsing action conflicts, then the grammar is not LALR(1).

All other entries are ERROR

GVP COLLEGE OF ENGINEERING FOR WOMEN

134

LALR STATES FROM CLR
I2,9: E→T., $/+/)

T → T.*F, $/+/)/*

I3,10: T →F. , $/+/)/*

I4,11: F →(.E) , $/+/)/*

E →.E+T,)/+

E →.T,)/+

T →.T*F,)/+/*

T →.F,)/+/*

F →.(E),)/+/*

F →.id,)/+/*

I5,12: F →id. , $/+/)/*

I6,16: E →E+.T, $/).+

T →.T*F, $/)/+/*

T → .F, $/+/)/*

F →.(E), $/)/+/*

F →.id, $/)/+/*

I7,17: T →T*.F, $/+/)/*

F →.(E), $/+/)/*

F →.id, $/+/*/)

I8,18: F →(E.), $/+/)/*

E →E.+T,)/+

I13,19: E →E+T., $/)/+

T →T.*F, $/)/+/*

I14, 40: T →T*F., $/+/)/*

I15, 21: F →(E). , $/+/)/*

GVP COLLEGE OF ENGINEERING FOR WOMEN

135

STATE + * () Id $ E T F

0 S4,11 S5,12 1 2,9 3,10

1 S6,16 ACC

2,9 R2 S7,17 R2 R2

3,10 R4 R4 R4 R4

4,11 S4,11 S5,12 8,18 2,9 3,10

5,12 R6 R6 R6 R6

6,16 S4,11 S5,12 13,9 3,10

7,17 S4,11 S5,12 14,20

8,18 S6,16 S15,21

13,19 R1 S7,17 R1

14,20 R3 R3 R3 R3

15,21 R5 R5 R5 R5

