Q B.Tech IT-CO-Unit II- €O Tutorials2

Ref 1. "Computer Organization,” by Carl Hamacher, Zvonko Vranesic and
Safwat Zaky. Fifth Edition McGraw-Hill, 2002. (Chapter 2-problems -pps.
98-102)

1) Represent the decimal values 5, —2,14, —10,26, —19,51, and —
43, as signed, 7-bit numbers in the following binary formats:
(a) Sigh-and-magnitude
(b) I's-complement
(c) 2's-complement

Q CO Tutorials?2

2) (a) Convert the following pairs of decimal humbers to 5-bit,
signed, 2's-complement binary numbers and add them. State
whether or not overflow occurs in each case.

(a) 5and 10

(b) 1and 13

(c) -14and 11

(d) -5and 7

(e) -3 and-8

(f) -10 and-13
(b) Repeat Part a for the subtract operation, where the second
number of each pair is to be subtracted from the first number.
State whether or not overflow occurs in each case.

Q CO Tutorials?2

3) Given a binary pattern in some memory location, is it possible
to tell whether this pattern represents a machine instruction or
a humber?

4) A memory byte location contains the pattern 00101100.What
does this pattern represent when interpreted as a binary
humber? What does it represent as an ASGI code?

5) Consider a computer that has a byte-addressable memory
organized in 32-bit words according to the big-endian scheme. A
program reads ASCIT characters entered at a keyboard and
stores them in successive byte locations, starting at location
1000. Show the contents of the two memory words at

locations 1000 and 1004 after the name "Johnson" has been
entered.

Q CO Tutorials?2

6) Repeat Problem 2.5 for the little-endian scheme.

7) A program reads ASCIT characters representing the digits
of a decimal numbers they are entered at a key board and
stores the characters in successive memory bytes. Examine the
ASCIT code in Appendix E and indicate what operation is needed
to convert each character into an equivalent binary number.

8) Write a program that can evaluate the expression
AxB+CxD

In a single accumulator processor. Assume that the processor

has Load, Store, Multiply , and Add instructions, and that all

values fit in the accumulator.

Q CO Tutorials?2

9)The list of student marks shown in Figure 2.14 is changed to
contain test scores for each student. Assume that there are n
students. Write an assembly language program for computing
the sums of the scores on each test and store these sums in the
memory word locations at addresses SUM, SUM 4, SUM -f
8....number of tests, j, is larger than the number of registers in
the processor, so the type of program shown in Figure 2.1S for
the 3-test case cannot be used. Use two nested loops, as
suggested in Section 2.5.3. The inner loop should accumulate the
sum for a particular test, and the outer loop should run over the
number of tests, j. Assume that's j is stored in memory location
J, placed ahead of location N.

Q CO Tutorials?2

10)(a) Rewrite the dot product program in Figure 2.33 for an
instruction set in which the arithmetic and logic operations can
only be applied to operands in processor registers. The two
instructions Load and Store are used to transfer operands
between registers and the memory.

(b) Calculate the values of the constants k1 and k2 in the
expression kl1+k2n, which represents the number of memory
accesses required to execute your program for Part a, including
instruction word fetches. Assume that each instruction occupies
a single word.

Q CO Tutorials?2

11)Repeat Problem 2.10for a computer with two-address
instructions, which can perform operations such as

A< [A]+[B]
where A and B can be either memory locations or processor
registers. Which computer requires fewer memory accesses?
(Chapter 8 on pipelining gives a different perspective on the
answer to this question.)

12)"Having a large number of processor registers makes it
possible to reduce the number of memory accesses needed to
perform complex tasks." Devise a simple computational task to
show the validity of this statement for a processor that has
four registers compared to another that has only two registers.

Q Solutions For the CO Tutorials

13) Registers R1 andR2o0f a computer contain the decimal values
1200 and 4600. What is the effective address of the memory
operand in each of the following instructions?

(a) Load 20(R1),R5

(b) Move #3000,R5

(c) Store R5,30(R1,R2)
(d) Add . -(R2),R5

(e) Subtract (R1)+Rb5

14) Assume that the list of student test scores shown in Figure
2.14 is stored in the memory as a linked list as shown in Figure
2.36. Write an assembly language program that accomplishes
the same thing as the program in Figure 2.15. The head record
is stored at memory location 1000.

Q Solutions For the CO Tutorials

15)Consider an array of numbers where i = O throughn - 1
is the row index, and J = O through m - 1is the column index.
The array is stored in the memory of a computer one row after
another, with elements of each row occupying m successive word
locations. Assume that the memory is byte-addressable and that
the word length is 32 bits. Write a subroutine for adding column
X to columny, element by element, leaving the sum elements in
columny. The indices x and y are passed to the subroutine in
registers R1 and R2. The parameters n and m are passed to the
subroutine in registers R3 and R4, and the address of element
A(0,0) is passed in register RO. Any of the addressing modes in
Table 2.1 can be used. At most, one operand of an instruction
can be in the memory.

Q Solutions For the CO Tutorials

16)Both of the following statements cause the value 300 to be
stored in location 1000, but at different times.

ORIGIN 1000

DATAWORD 300 and

Move #300,1000

Explain the difference.

17)Register RS is used in a program to point to the top of a

stack. Write a sequence of instructions using the Index, Auto

increment, and Auto decrement addressing modes to perform

each of the following tasks;

(a) Pop the top two items of f the stack, add them, and then
push the result onto the stack.

(b) Copy the fifth item from the top into register R3.

(c) Remove flie top ten items from the stack.

10

Q Solutions For the CO Tutorials

18)A FIFO queue of bytes is to be implemented in the memory, occupying a
fixed region of k bytes. You need two pointers, an IN pointer and an OUT
pointer. The IN pointer keeps track of the location where die next byte is
to be upended to the queue, and the OUT pointer keeps track of the
location containing the next byte to be removed from the queue.

(a)Asdataitemsareaddedtothequeue,theyareaddedatsuccessivelyhi
gheraddresses until the end of the memory region is reached. What
happens next, when a new item is o be added to the queue?

(b) Choose a suitable definition for the IN and OUT pointers,
indicating what they point to in the data structure. Use a simple diagram to
illustrate your answer.

(c)Showthatifthestateofthequeueisdescribedonlybythetwopointer
s,thesituations when the queue is completely fill and completely empty are
indistinguishable.

(d) What condition would you add to solve the problem in part c?

(e) Propose a procedure for manipulating the two pointers IN and
OUT to append and remove items from the queue.

11

Q Solutions For the CO Tutorials

19)Consider the queue structure described in Problem2.18. Write
APPEND and REMOVE routines that transfer data between a
processor register and the queue. Be careful to inspect and update
the state of the queue and the pointers each time an operation is
attempted and performed.

20)Consider the following possibilities for saving the return
address of a subroutine:

(@) Ina processor register

(b) Inamemory location associated with die call, so that a
different location is used when the subroutine is called from
different places

(c) On astack Which of these possibilities supports
subroutine nesting and which supports subroutine recursion (that
is, a subroutine that calls itself)?

12

Q Solutions For the CO Tutorials

22)Assume you want to organize subroutine calls on a computer as
follows: When routine Main wishes to call subroutine SUB1, it calls an
infermediate routine, CALLSUB, and passes to it the address of
SUB1 as a parameter in register R1. CALLSUB saves the return
address on a stack, making sure that the upper limit of the stack is
not exceeded. Then it branches to SUBI1. To return to the calling
program, subroutine SUB1 calls another intfermediate routine,
RETRN. This routine checks that the stack is not empty and then
uses the top element to return to the original calling program.

Write routines CALLSUB and RETRN, assuming that the
subroutine call instruction saves the return address in a link register,
RL. The upper and lower limits of the stack are recorded in memory
locations UPPERLIMIT and LOWERLIMIT, respectively.

13

Q Solutions For the CO Tutorials

21)The subroutine call instruction of a computer saves the return
address in a processor register called the link register, RL. What
would you do to allow subroutine nesting? Would your scheme allow
the subroutine to call itself?

23)The linked-list insertion subroutine in Figure 2.37 does not
check if the E) of the new record matches that of a record already
in the list. What happens in the execution of the subroutine if this
is the case? Modify the subroutine to return the address of the
matching record in register ERROR if this occurs or return a zero
if the insertion is successful.

14

o Solutions For the CO Tutorials 2

24)The linked-list deletion subroutine in Figure 2.38 assumes that
a record with the ID contained in register REIDNUM is in the list.
What happens in the execution of the subroutine if there is no
record with this ID? Modify the subroutine to return a zero in
RIDNUM if deletion is successful or leave RIDNUM unchanged if
the record is not in the list.

15

O Solutions For the CO Tutorials 2

Ref. Solution manual of "Computer Organization,” by Carl Hamacher, Zvonko
Vranesic and Safwat Zaky. Fifth Edition McGraw-Hill, 2002.(unit ii-pps.1=9)

2.1. The three binary representations are given as:

Decimal | Sign-and-magnitude | 1's-complement | 2’s-complement,
values representation representation | representation

H 0000101 0000101 0000101

— 100OMLO 1111101 1111110

14 0001110 0001110 0001110

—10 1001010 1110101 1110110

26 0011010 0011010 OO11010

—19 1010011 1101100 1101101

51 0110011 0110011 0110011

—43 1101011 1010100 1010101

16

Q Solutions For the CO Tutorials 2

2.2, (a)

(a) 00101
F 01010

01111

no overbow

(d) 11011
+ 00111

00010
no overflow

(b) 00111
I 01101
10100
overlow

(e) 11101
+ 11000

10101
no overflow

() 10010
01011

11101

no overfow

(f) 10110
+ 10011

01001
overflow

17

Q Solutions For the CO Tutorials 2

(b) To subtract the second number, form its 2’s-complement and add it to
the first number.

(@ 00101 (b) 00111 (c¢) 10010

F 10110 I 10011 10101
11011 11010 00111
no overflow no overflow overflow

(d) 11011 (e) 11101 (f) 10110
+ 11001 + 01000 + 01101

10100 00101 00011
no overflow no overflow no overflow

o Solutions For the CO Tutorials 2

2.3.

2.4.

2.6.

2.7.

No; any binary pattern can be interpreted as a number or as an instruction.

The number 44 and the ASCII punctuation character “comma”.

. Byte contents in hex, starting at location 1000, will be 1A, 6F, 68, 61, 73,

6F, 6. The two words at 1000 and 1004 will be AA6F6861 and T36F610XX.
Byte 1007 (shown as XX) is unchanged. (See Section 2.6.3 for hex nota-
tion.)

Byte contents in hex, starting at location 1000, will be 1A, 6F, 68, 6L, 73,
6F, 6. The two words at 1000 and 1004 will be 6 E686FAA and X X6E6FT3.
Byte 1007 (shown as XX) is unchanged. (See section 2.6.3 for hex nota-
tion.)

Clear the high-order 4 bits of each byte to 0000.

19

Q Solutions For the CO Tutorials 2

2.8. A program for the expression is:

Load
Multiply
Store
Load
Multiply
Add
Store

A
I3
RESULT
C
D
RESULT
RESULT

Chapter 2 - Machine Instructions & Programs

20

Q Solutions For the CO Tutorials 2

2.9. Memory word location J contains the number of tests, j§, and memory word
location N contains the number of students, n. The list of student marks
begins at memory word location LIST in the format shown in Figure 2.14.
The parameter Stride — 4(5 + 1) is the distance in bytes between scores

on a particular test for adjacent students in the list.

The Base with index addressing mode (1R1,]82) is used to access the scores
Register R1 points to the test score for student 1,
and R2 is incremented by Stride in the inner loop to access scores on the

on a particular test.

same test by successive students in the list.

OUTER

ININEIL

Mowve
Increment
Multiply
Mowre
Add

Mowe

Mowe
Mowe
Clear
Clear

Add

Add
INecrement
Branch=>=0
Mowe

Add

Add

Decremendt
Branch=0

J, R4

RA4

#£41, R4
#LIST,R1
#1, K1
#SUM,R3

J,R10
N, R11

R

RO
(R1,1x2), RO
R4, IR2

R11
INNER
RO,(R3)
#1,R3
#1,R1

R10
OUTER

Compute and place Stride — 4A(5 + 1)
into register 4.

Imitialize base register R1 to the

location of the test 1 score for stuadent 1.
Initialixze register R3 to the location

of the sum for test 1.
Initialixze outer loop counter R10 to j.
Initialize inner loop counter IR11 to re.
Clear index register IR2 Lo sero.
Clear sum register IL0 to zero.
Accumulate the sum of test scores in TR0,
Increment index register IL2 by Stride value.
Check if all student scores on current

test hawve been accumulated.
Store sum of current test scores and

increment sum location pointer.
Increment base register to next test

score for student 1.
Choeck if the sums for all tests hawve

boen compuated.

Chapter 2 - Machine Instructions & Programs

21

Q Solutions For the CO Tutorials 2

2.10. (a)

Memory
ACCESSeS

Move H#AVEC.R1 1

Move #BVEC,R2 1

Load N,R3 2

Clear RO 1

LOOFP Load (R1)+,R4 2

Load (R2)+,R5 2

Multiply Ii4,I5 1

Add R5,R0 1

Decrement R3 1

Branch>=0 LOOP 1

Store RO, DOTPROD 2

bk =14+14+24+14+2=T;andk:2=2+24+1+14+14+1=28

Chapter 2 - Machine Instructions & Programs

22

Y

2.11.

2.12.

2.13.

Solutions For the CO Tutorials 2

(a) The original program in Figure 2.33 is efficient on this task.
(b) by =T; and ks =7

This is only better than the program in Problem 2.10(a) by a small
amount.

The dot product program in Figure 2.33 uses five registers. Instead of
using R0 to accumulate the sum, the sum can be accumulated directly into
DOTPRROD. This means that the last Move instruction in the program can
be removed, but DOTPROD is read and written on each pass through the
loop, significantly increasing memory accesses. The four registers R1, R2,
R3, and RA4, are still needed to make this program efficient, and they are
all used in the loop. Suppose that R1 and R2 are retained as pointers to
the A and B vectors. Counter register R3 and temporary storage register
R4 could be replaced by memory locations in a 2-register machine; but
the number of memory accesses would increase significantly.

1220, part of the instruction, 5830, 4599, 1200.

Chapter 2 - Machine Instructions & Programs

23

Q Solutions For the CO Tutorials 2

2.14. Linked list version of the student test scores program:

LOOP

Mowve
Clear
Clear
Clear
Add
Add
Add
Mowe
Branch=(0
Mowve
Move
Move

#1000,R0
R

R2

R3
8(R0),R1
12(R0),R2
16(R0),R3
A(R0),R0
LOOP
R1,SUMI1
R2,SUM?2
R3,SUM3

Chapter 2 - Machine Instructions & Programs

24

Q Solutions For the CO Tutorials 2

2.15. Assume that the subroutine can change the contents of any register used

to pass parameters.

Subroutine

LOoPr

Move
Multiply

Multiply
Multiply

Move

Add

Add

Add
Decrement
Branch=>(0)
Move
Return

R5,—(SP)
#4.RA

#4,R1
#4,R2

(RO,R1),R5
R5,(R0,R2)
R4,R1
RA,R2

R3

LOOP
(SP)+,R5

Save R5 on stack.

Use R4 to contain distance in
bytes (Stride) between successive
elements in a column.

Byte distances from A(0,0)
to A(0,z) and A(0,y)
placed in R1 and R2.

Add corresponding
column elements.

Increment column element
pointers by Stride value.

Repeat until all
clements are added.

Restore R5.

Return to calling program.

Chapter 2 - Machine Instructions & Programs

25

Q Solutions For the CO Tutorials 2

2.16. The assembler directives ORIDGIN and DATAWOILD cause the object pro
gram memory image constructed by the assembler to indicate that 300 is
to be placed at memory word location 1000 at the time the program is
loaded into memory prior to execution.

The Mowve instruction places 300 into memory word location 1000 when
the instruction is executed as part of a program.

2.17. (a)
Mowve (R5)+,R0
Add (R5)+, RO
Move RO,—(I15H)
(&)
Move 16(R5),R3
(<)

Add FHFEA0 RS

Chapter 2 - Machine Instructions & Programs 26

Q Solutions For the CO Tutorials 2

2.18. (a) Wraparound must be used. That is, the next item must be entered at
the beginning of the memory region, assuming that location is empty.

() A current quene of bytes is shown in the memory region from byte
location 1 to byte location £ in the following diagram.

Increasing addresses — =

Current queus
1 of bvtes g

b

I i
ouUT IM

The IN pointer points to the location where the next byte will be appended
to the queue. If the queue is not full with k bytes, this location is empty,

as shown in the diagram.

The OUT pointer points to the location containing the next byte to be
removed from the quene. If the gueue is not empty, this location contains
a valid byte, as shown in the diagram.

Initially, the queue is empty and both IN and OUT point to location 1.

Chapter 2 - Machine Instructions & Programs

o Solutions For the CO Tutorials 2

() Imitially, as stated in Part &, when the gqueune is empty, both the TN
and OUT pointers point to location 1. When the guene has been filled
with k& byvtes and nonce of them bhave boeen remoswed, the OUT pointer still
points to location 1. But the IN pointer mmnuast also be pointing to location
1, because (following the wraparound rule) it must point to the location
where the next byvte will be appended. Thus, in both cases, both pointers
point to location 1; but in one case the gueuwe is emptlty, and in the other
case it is full.

() One way to resolve the problem in Part () is to maintain at least one
empty location at all times. That is, an itermnm cannot be appended to the
gqucuc if ([IN] + 1) Modulo & = |[OUT]. If this is done, the gqueue is cinpty
only when [IN|] = [OUT].

(e) Append operation:

e IN <« ([IN] + 1) Modulo k

e If [IN] = |[OUT], gueune is full. Restore contents of IN to contents of
LOC and indicate failed append operation, that is, indicate that the
quente was uall. Otherwise, store mew iterm at O

IRemove operation:

e If [TIN] [OUT], the queune is empty. Indicate failed remowve operation,
that is, indicate that the gquene was empty. Otherwise, read the item
pointed to by OUT and performm OUT «— ([OUT] + 1) Modulo k.

Chapter 2 - Machine Instructions & Programs

28

