Unit – I
Basic structure of computers and Computer arithmetic

Lecture1

Lecture-2

Lecture-3

Lecture-4

Lecture-5
Characteristics of floating point numbers:
The characteristics are 1. Precision 2. Gap 3. Range
Precision:
It characterizes how precise a floating point value can be. It is defined as the number of bits in the significand. The greater the number of bits in the significand, the greater is the CPU’s precision and the more precise is it’s value. Many CPUs have 2 representations for floating point numbers. They are called single precision and double precision here double precision has twice the number of bits.
Gap:
The gap is the difference between two adjacent values. It’s value depends on the value of the exponent.
Take the number: X = .10111010 * 23 .
It’s adjacent values are : .10111001 * 23 and .10111011* 23 .
Each number produce a gap of .00000001* 23 .
In general the gap for floating point value X can be expressed as 2(Xe-precision)
Range:
The range of a floating point representation is bounded by it’s smallest and largest possible values.
Overflow and underflow;
Overflow occurs when an operation produces a result that can not be stored in computers’s floating point registers. Underflow occurs when an operation produces a result between zero and either the positive or negative smallest possible value.
IEEE 754 Floating point standard:
This standard specifies 2 precision for floating point numbers which are called single precision and double precision floating point representations.
Single Precision Format:
This format has 32 bits. 1 bit for sign; 8 bits for the exponent; 23 for the significand. The significand also includes an implied 1 to the left of its radix point(except for special values and denormalized numbers).

[bookmark: _MON_1541517244][bookmark: _MON_1523708431]	
Error Detection codes:
Information is stored as binary codes and are transmitted by serial or parallel communication. During transmission noise is added to the signal and it may change binary bits in the code from 1 to 0, and vice versa. An error detection code is a binary code that detects digital errors during transmission. The detected errors can not be corrected but their presence is indicated.
Parity bit:
The most common error detection code used is the parity bit. A parity bit is an extra bit included with a binary message to make the total number of 1’s either odd or even. If the message consists of n bits , then the error detection code consists of n+1 bits. If the bit added to the message makes the sum of 1’s odd in the error detection code, then the scheme is called odd-parity. If the sum of bits is even , the scheme is called even parity scheme.
	Message xyz
	P(odd)
	P(even)
	Error detection code, odd parity
	Error detection code, even parity

	000
	1
	0
	0001
	0000

	 001
	0
	1
	0010
	0011

	010
	0
	1
	0100
	0101

	011
	1
	0
	0111
	0110

	100
	0
	1
	1000
	1001

	101
	1
	0
	1011
	1011

	110
	1
	0
	1101
	1101

	111
	0
	1
	1110
	1111

Parity Generator and Parity Checker:
X
Y
z

	[image: Description: File:Xor-gate-en.svg][image: Description: http://www.circuitstoday.com/wp-content/uploads/2011/11/EX-NOR-Gate-Symbol.jpg]odd Parity out
Parity Checker:
X
Y
z
[image: Description: File:Xor-gate-en.svg]
	

Parity out from generator	[image: Description: File:Xor-gate-en.svg]

	[image: Description: http://www.circuitstoday.com/wp-content/uploads/2011/11/EX-NOR-Gate-Symbol.jpg]Error
 Indication

The circuit arrangement checks the occurrence of error any odd number of times. An even number of errors is not detected.
We note that P(even) function is the exclusive –OR x,y,z because it is equal to 1 when either one or all 3 of the variables are equal to 1. The P(odd) function is the complement of the P(even) function.
Assume at the sending end the message bits and odd parity bit is generated. The EX-OR gates generate P(even) function and to generate P(odd), the complement of P(even) is used.
The 4 bits transmitted has an odd number of I’s. If an error occurs during transmission, then the number of 1’s become even. Hence parity checker checks for even parity.
Lecture-6
COMPUTER ARITHMETIC:
Addition, subtraction, multiplication are the four basic arithmetic operations. Using these operations other arithmetic functions can be formulated and scientific problems can be solved by numerical analysis methods.
Arithmetic Processor:
It is the part of a processor unit that executes arithmetic operations. The arithmetic instructions definitions specify the data type that should be present in the registers used . The arithmetic instruction may specify binary or decimal data and in each case the data may be in fixed-point or floating point form.
Fixed point numbers may represent integers or fractions. The negative numbers may be in signed-magnitude or signed- complement representation. The arithmetic processor is very simple if only a binary fixed point add instruction is included. It would be more complicated if it includes all four arithmetic operations for binary and decimal data in fixed and floating point representations.
Algorithm:
Algorithm can be defined as a finite number of well defined procedural steps to solve a problem. Usually, an algorithm will contain a number of procedural steps which are dependent on results of previous steps. A convenient method for presenting an algorithm is a flowchart which consists of rectangular and diamond –shaped boxes. The computational steps are specified in the rectangular boxes and the decision steps are indicated inside diamond-shaped boxes from which 2 or more alternate path emerge.
Addition and Subtraction:
3 ways of representing negative fixed point binary numbers:
1. Signed-magnitude representation---- used for the representation of mantissa for floating point operations by most computers.
2. Signed-1’s complement
3. Signed -2’s complement—Most computers use this form for performing arithmetic operation with integers

Addition and subtraction algorithm for signed-magnitude data

Let the magnitude of two numbers be A & B. When signed numbers are added or subtracted, there are 4 different conditions to be considered for each addition and subtraction depending on the sign of the numbers. The conditions are listed in the table below. The table shows the operation to be performed with magnitude(addition or subtraction) are indicated for different conditions.

	Sl.No
	Operation
	Add Magnitudes
	Subtract magnitudes

	
	
	
	When A> B
	When A< B
	When A=B

	1
	(+A) + (+B)
	 + (A + B)
	
	
	

	2
	(+A) + (-B)
	
	+(A-B)
	-(B-A)
	+(A-B)

	3
	(-A) + (+B)
	
	-(A-B)
	+(B-A)
	+(A-B)

	4
	(-A) + (-B)
	- (A + B)
	
	
	

	5
	(+A) - (+B)
	
	+(A-B)
	-(B-A)
	+(A-B)

	6
	(+A) - (-B)
	+ (A + B)
	
	
	

	7
	(-A) - (+B)
	- (A + B)
	
	
	

	8
	(-A) - (-B)
	
	-(A-B)
	+(B-A)
	+(A-B)

The last column is needed to prevent a negative zero. In other words, when two equal numbers are subtracted, the result should be +0 not -0.

The algorithm for addition and subtraction (from the table above):
Addition Algorithm:
When the signs of A and B are identical, add two magnitudes and attach the sign of A to the result. When the sign of A and B are different, compare the magnitudes and subtract the smaller number from the larger. Choose the sign of the result to be the same as A if A>B or the complement of sign of A if A < B. If the two magnitudes are equal, subtract B from A and make te sign of the result positive.
Subtraction algorithm:
When the signs of A and B are different, add two magnitudes and attach the sign of A to the result. When the sign of A and B are identical, compare the magnitudes and subtract the smaller number from the larger. Choose the sign of the result to be the same as A if A>B or the complement of sign of A if A < B. If the two magnitudes are equal, subtract B from A and make te sign of the result positive.
Hardware Implementation:
Let A and B are two registers that hold the numbers.
AS and BS are 2, flip-flops that hold sign of corresponding numbers. The result is stored In A and AS .and thus they form Accumulator register.
We need to perform micro operation, A+ B and hence a parallel adder.
A comparator is needed to establish if A> B, A=B, or A<B.
We need to perform micro operations A-B and B-A and hence two parallel subtractor.
An exclusive OR gate can be used to determine the sign relationship, that is, equal or not.
Thus the hardware components required are a magnitude comparator, an adder, and two subtractors.
Reduction of hardware by using different procedure:
1. We know subtraction can be done by complement and add.
2. The result of comparison can be determined from the end carry after the subtraction.
We find An adder and a complementer can do subtraction and comparison if 2’s complement is used for subtraction.

Hardware forsigned-magnitude addition and subtraction:

[image:]

AVF Add overflow flip flop. It hold the overflow bit when A & B are added.
Flip flop E—Output carry is transferred to E. It can be checked to see the relative magnitudes of the two numbers.
A-B = A +(-B)= Adding a and 2’s complement of B.
The A register provides other micro operations that may be needed when the sequence of steps in the algorithm is specified.
The complementer Passes the contents of B or the complement of B to the Parallel Adder depending on the state of the mode control B. It consists of EX-OR gates and the parallel adder consists of full adder circuits. The M signal is also applied to the input carry of the adder.
When input carry M=0, the sum of full adder is A +B. When M=1, S = A + B’ +1= A – B
Hardware algorithm:
Flow Chart for Add and Subtract operations:
The EX-OR gate provides 0 as output when the signs are identical. It is 1 when the signs are different.
A + B is computed for the following and the sum is stored in EA:
1. When the signs are same and addition operation is required.
2. When the signs are different and subtract operation is required.

The carry in E after addition indicates an overflow if it is 1 and it is transferred to AVF, the addoverflow flag

A-B = A+ B’+1 computed for the following:
1. When the signs are different and addition operation is required.
2. When the signs are same and subtract operation is required.
No overflow can occur if the numbers are subtracted and hence AVF is cleared to Zero.

[the subtraction of 2 n-digit un signed numbers M-N (N≠0) in base r can be done as follows:
1. Add minuend M to thee r’s complement of the subtrahend N. This performs M-N +rn .
2. If M ≥ N, The sum will produce an end carry rnwhich is discarded, and what is left is the result M-N.
3. If M< N, the sum does not produce an end carry and is equal to rn–(N-M), which is the r’s complement of the sum and place a negative sign in front.]
A 1 in E indicates that A ≥ B and the number in A is the correct result.
If this number in A is zero, the sign AS must be made positive to avoid a negative zero.
A 0 in E indicates that A< B. For this case it is necessary to take the 2’s complement of the value in A.
In the algorithm shown in flow chart, it is assumed that A register has circuits for micro operations complement and increment. Hence two complement of value in A is obtained in 2, micro operations. In other paths of the flow chart , the sign of the result is the same as the sign of A, so no change in AS is required.
However When A < B, the sign of the result is the complement of original sign of A.
Hence The complement of AS stored in AS.
Final Result: AS A
Flow chart for ADD and Subtract operations:
[image:]

Addition and Subtraction with signed-2’s complement Data.:
Arithmetic Addition:
This method does not need a comparison or subtraction but only addition and complementation. The procedure is as below:
1. Represent the negative numbers in 2’s complement form.
2. Add the two numbers including the sign bits and discard any carry out of sign bit position.
3. The overflow bit V is set to 1 if there is a carry into sign bit and no carry out of sign bit or if there is a no carry into sign bit and a carry out of sign bit. Otherwise it is set to zero.
4. If the result is negative, take the 2’s complement of the result to get a correct negative result.
Arithmetic Subtraction:
1. Represent the negative numbers in 2’s complement form.
2. Take the 2’s complement of the subtrahend including the sign bit and add it to the minuend including the sign bit.
3. The overflow bit V is set to 1 if there is a carry into sign bit and no carry out of sign bit or if there is a no carry into sign bit and a carry out of sign bit. Otherwise it is set to zero.
4. Discard the carry out of the sign bit position.
Note: A subtraction operation can be changed to an addition operation if the sign of the subtrahend is changed. (
BR Register
)

 (
V
) (
AC Register
) (
Complementer&Parallel
 Adder
)

	Overflow

	Fig: Hardware for Signed 2/s complement for addition/ subtractioin.
				[image:]

Lecture-7
Multiplication Algorithm:
Hardware implementation of multiplication of numbers in signed – magnitude form:
1. A adder is provided to add two binary numbers and the partial product is accumulated in a register.
2. Instead of shifting the multiplicand to the left, the partial product is shifted to the right, which result in leaving the partial product and the multiplicand in the required relative positions.
3. When the corresponding bit of the multiplier is zero, there is no need to add all zeros to the partial product, since it will not alter it’s value.
The hardware consists of 4 flipflops, 3 registers, one sequence counter , an adder and complementer.
[image:]
Q register&QS flip flop : contains multiplier & Its sign
Sequence counter : It is set to a value equal to the number of bits in the multiplier
 B Register& BS flipflop : It contains the multiplicand,& its sign
A Register, E Flip flop : Initialized to ‘ 0’. AS denotes sign of partial product
EA Register : hold partial product, with carry generated in addition being shifted to E .
Qn : Rightmost bit of the multiplier; AQ : will contain the final product.

As AQ represent product register, both AS QSrepresent the sign of the partial product or product.
The number to be multiplied are stores in memory as n bit sign magnitude numbers and when transferred to register msb bit go to sign flipflop and remaining n-1 bits go to registers. Hence SC is initially set to n-1.
Let the lower order bit of the multiplier in Qntested.
If it is 1, the multiplicand in B is added to the present partial product in A.
If it is a ‘0’, nothing is done. Register EAQ is then shifted once to the right to form the new partial product. The sequence counter is decremented by 1 and it’s new value checked. If it is not equal to zero, the process is repeated and a new partial product is formed. The process stops when SC = 0.
The final product is available in both A and Q, with A holding the most significant bits and Q holding the least significant bits.

Flowchart for multiply operation:
[image:]

Numerical Example for the above algorithm:
	Multiplicand B= 10111
	E
	A
	Q
	SC

	Multiplier in Q
Qn =1;add B
First Partial Product
Shift Right EAQ
	0

0
0
	00000
10111
10111
01011
	10011

11001
	101

100

	Qn =1;add B
Second Partial Product
Shift Right EAQ
	
1
0
	10111
00010
10001
	

01100
	

011

	Qn =0; Shift Right EAQ
	0
	01000
	10110
	010

	Qn =0; Shift Right EAQ
	0
	00100
	01011
	001

	Qn =1;add B
Fifth Partial Product
Shift Right EAQ
	
0
0
	10111
11011
01101
	

10101
	

000

	Final Product in AQ
AQ = 0110110101
	
	
	
	

Lecture-8
Booth Multiplication Algorithm:
Multiplication of signed- 2’s complement integers:
This algorithm uses the following facts.
1. A string of 0’s in the multiplier requires no addition but just shifting.
2. A string of 1’s in the multiplier from bit weight 2k to weight 2m can be treated as 2k+1 - 2m.
Example: Consider the binary number: 001110(+14)
The number has a string of 1’s from 23 to 21 . Hence k = 3 and m= 1. As other bits are 0’s, the number can be represented as 2k+1 - 2m = 24 – 21 = 16-2 = 14. Therefore the multiplication M * 14 , where M is the multiplicand and 14 the multiplier can be done as Mx 24 –M x 21.
This can be achieved by shifting binary multiplicand M four times to the left and subtracting M shifted left once which is equal to (Mx 24 –M x 21.).
Shifting and addition/subtraction rules for multiplicand in Booth’s Algorithm:
1. The multiplicand is subtracted from the partial product upon encountering the first least significand 1 in a string of I’s in the multiplier.
2. The multiplicand is added to the partial product upon encountering the first 0 (provided that there was a previous 1)in a string of 0’s in the multiplier.
3. The partial product does not change when the multiplier bit is identical to the previous multiplier bit
Hardware Implementation of Booth Algorithm:
[image:]
Note: Sign bit is not separated from register. QR register contains the multiplier register and Qnrepresent the least significant bit of the multiplier in QR. Qn+1 is an extra flip flop appended to QR to facilitate a double bit inspection of the multiplier.
AC register and appended Qn+1 are initially cleared to 0.
Sequence counter Sc is set to the number n which is equal to the number of bits of bits In the multiplier.
QnQn+1 are to successive bits in the multiplier
Example for multiplication using Boot h algorithm:
	QnQn+1
	BR = 1011 ,+1 = 01001
	AC
	QR
	Qn+1
	SC

	10
	Initial
Subtract BR

ashr
	00000
01001
01001
00100
	10011

11001
	0

1
	101

100

	11
	ashr
	00010
	01100
	1
	011

	01
	Add BR

ashr
	10111
11001
11100
	

10110
	

0
	

010

	00

	ashr
	11110
	01011
	0
	001

	10
	Subtract BR

Ashr
	01001
00111
00011
	

10101
	

1
	

000

Algorithm in flowchart for multiplication of signed 2’s complement numbers.
[image:]
Array Multiplier:
2 -bit by 2- bit Array Multiplier:

 (
Multiplicand bits are b
1
and b
0
.Multiplier bits are a
1
and a
0 .
The first partial product is obtained by
multiplying a
0
by b
1
b
0
.
 The bit multiplication is implemented by AND gate. First partial product is made by two AND gates. Second partial product is made by two AND gates. The two partial products are added with two half adder circuits.
)

[image:]	
Combinational circuit binary multiplier:
A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels as there bits in the multiplier. The binary output in each level of the AND gates is added in parallel with the partial product of the previous level to form a ne partial product. The last level produces the product. For j multiplier and k multiplicand bits, we need j*k AND Gates and (j-1)*k bit adders to ptoduce a product of j+k bits.
4- bit by 3-bit Array Multiplier:
[image:]

[bookmark: _MON_1523712328][bookmark: _MON_1541517309]
Lecture-9
Division Algorithms:
Division Process for division of fixed point binary number in signed –magnitude representation:
[image:]
Let dividend A consists of 10 bits and divisor B consists of 5 bits.
1. Compare the 5 most significant bits of the dividend with that of divisor.
2. If the 5 bit number is smaller than divisor B, then take 6 bits of the dividend and compare with the 5 bit divisor.
3. The 6 bit number is greater than divisor B. Hence place a 1 for the quotient bit in the sixth position above the dividend. Shift the divisor once to the right and subtracted from the dividend. The difference is called partial remainder.
4. Repeat the process with the partial remainder and divisor. If the partial remainder is equal or greater than or equal to the divisor, the quotient bit is equal to 1.The divisor is then shifted right and subtracted from the partial remainder. If the partial remainder is small than the divisor, then the quotient bit is zero and no subtraction is needed. The divisor is shifted once to the right in any case,.
Hardware Implementation of division for signed magnitude fixed point numbers:
To implement division using a digital computer, the process is changed slightly for convenience.
1. Instead of shifting the divisor to the right, the dividend or the partial remainder, is shifted to the left so as to leave the two numbers in the required relative position.
2. Subtraction may be achieved by adding A (dividend)to the 2’s complement of B(divisor). The information about the relative magnitude is then available from end carry.
3. Register EAQ is now shifted to the left with 0 inserted into Qn and the previous value of E is lost..
4. The divisor is stored in B register and the double length dividend is stored in registers A and Q.
5. The dividend is shifted to the left and the divisor is subtracted by adding it’s 2’s complement value.
6. If E= 1, it signifies that A ≥ B.A quotient bit is inserted into Qnand the partial remainder is shifted to the left to repeat the process.
7. If E = 0, it signifies that A < B so the quotient Qn remains 0(inserted during the shift). The value of B is then added to restore the partial remainder in A to its previous value. The partial remainder is shifted to the left and the process is repeated again until all 5 quotient bits are formed.
8. At the end Q contains the quotient and A the remainder. If the sign of dividend and divisor are alike, the quotient is positive and if unalike, it is negative. The sign of the remainder is the same as dividend.
 (
Sequence
Counter(
 SC)
) (
B Register
)
 (
Q
S
) (
Complementer
 and parallel adder
) (
E
) (
Q Register
) (
A Register
)

 (
A
S
)
Qn
	 0
Hardware for implementing division of fixed point signed- Magnitude Numbers
Example of Binary division with digital hardware: Divisor B = 10001, B + 1 = 01111
	
	
	E
	A
	Q
	SC

	
	Dividend:
	
	01110
	00000
	5

	
	Shl EAQ
	
	11100
	00000
	

	
	Add , B + 1
	
	01111
	
	

	
	E = 1
	1
	01011
	
	

	
	Set Qn= 1
	1
	01011
	00001
	4

	
	Shl EAQ
	0
	10110
	00010
	

	
	Add , B + 1
	
	01111

	
	

	
	E = 1
	1
	00101
	
	

	
	Set Qn= 1
	1
	00101
	00011
	3

	
	Shl EAQ
	0
	01010
	00110
	

	
	Add , B + 1
	
	01111

	
	

	
	E= 0; Leave Qn= 0
	0
	11001
	00110
	

	
	Add B
	
	10001

	
	

	
	Restore remainder
	1
	01010
	
	2

	
	Shl EAQ
	0
	10100
	01100
	

	
	Add , B + 1
	
	01111

	
	

	
	E = 1
	1
	00011
	
	

	
	Set Qn= 1
	1
	00011
	01101
	1

	
	Shl EAQ
	0
	00110
	11010
	

	
	Add , B + 1
	
	01111

	
	

	
	E= 0; Leave Qn= 0
	0
	10101
	11010
	

	
	Add B
	
	10001

	
	

	
	Restore remainder
	1
	00110
	11010
	0

	
	Neglect E
	
	
	
	

	
	Remainder in A
	
	00110
	11010
	

	
	Quotient in Q
	
	
	
	

Divide overflow:
When the dividend is twice as long as the divisor, the condition for overflow can be stated as follows:
A divide-overflow condition occurs if the higher order half bits of the dividend constitute a number greater than or equal to the divisor. If the divisor is zero, then the dividend will definitely be greater than or equal to divisor. Hence divide overflow condition occurs and hence the divide-overflow –flip flop will be set. Let the flip flop be called DVF.
Handling DVF:
1. Check if DVF is set after each divide instruction. If DVF is set, then the program branches to a subroutine that takes corrective measures such as rescaling the data to avoid overflow.
2. An interrupt is generated if DVF is set. The interrupt causes the processor to suspend the current program and branch to interrupt service routine to take corrective measure. The most common corrective measure is to remove the program and type an error message that explains the reasons.
3. The divide overflow can be handled very simply if the numbers are represented in floating point representation.

Flow chart for divide operation: 	
[image:]

Assumption:
Operands are transferred from memory to registers as n bit words.n-1 bit form magnitude and 1 bit shows the sign.
A divide overflow condition is tested by subtracting the divisor in B from half of the bits of dividend stored in A. If vA ≥ B, the DVF is set and the operation is terminated prematurely. If A < B, no DVF occurs and so the value of dividend is restored by adding B to A.
The division of the magnitudes starts by shifting the dividend in AQ to the left, with the higher order bit shifted into E. If the bit shifted into E is 1, we know that EA is greater than B because EA consists of a 1 followed by n-1 bits while B consists of only n-1 bits. In this case, B must be subtracted from EA and 1 inserted into Qn for the quotient bit. Since register A is missing the higher order bit of the dividend (which is in E), it’s value is EA – 2n-1 . Adding to this value the 2’s complement of B results in

(EA-2n-1) + (2n-1 –B)= E-B. The carry from the addition is not transferred to E if we want E to remain a 1.
If the shift left operation inserts a zero into E, the divisor is subtracted by adding it’s 2’s complement value and the carry is transferred into E. If E = 1, it signifies that A ≥ B and hence Qn is set to 1. If E = 0, it signifies that A < B and the original number is restored by adding B to A. In the latter case we leave a 0 in Qn .(0 was inserted during the shift).
This process is repeated again with register A holding the partial remainder. After n-1 times, the quotient magnitude is formed in the register Q and the remainder is found in register A.

1.1.1.1. Lecture-10

Floating-Point Addition and Subtraction
[image: f22.pdf]Floating-Point Multiplication

[image: f23.pdf]

Floating-Point Division
[image: f24.pdf]

[bookmark: _MON_1523712960][bookmark: _MON_1541517350]
Lecture-11

[bookmark: _MON_1523713530][bookmark: _MON_1541517906]
[bookmark: _MON_1523713550][bookmark: _MON_1541517368]Lecture-12

Lecture-13

Test Questions

[bookmark: _MON_1523946070][bookmark: _MON_1526703294][bookmark: _MON_1526703312][bookmark: _MON_1541517433][bookmark: _MON_1541517513][bookmark: _MON_1523942923]
Fill in the blanks type of questions <Minimum of ten>
a. The decimal representation for hex number F3 is .

b. The binary equivalent for the decimal number 41.6875 is

c. The BCD code for the decimal number 248 is .

d. For a given number N in base r having n digits, the (r-1)’s complement of N is defined as

e. The 10’s complement of a decimal number is obtained by adding to the 9’s complement value.

f. When 2 unsigned numbers are added, an overflow is detected from the of the most significant position.

g. An overflow for addition/ subtraction of two signed numbers is detected when the carry into the sign bit position and carry out of the sign bit position are .

h. Booth multiplication algorithm is followed when the binary integers are represented in

i. When Booth algorithm is used for multiplication, the partial product does not change when the multiplier .is identical to the previous multiplier .

j. Floating point multiplication and division do not require an alignment of the .

Answers: (1). 243 (2) 101001.1011 (3) 0010 0100 1000

 (4) (rn-1)-N (5) 1 (6) carry out (7) not equal

 (8) signed 2’s complement representation for negative integers. (9) bit, bit

 (10) mantissa

Multiple choice questions<Minimum of ten>
1. Floating point representation is used to store
(A) Boolean values (B) whole numbers (C) real integers (D) integers
Ans: C
2. In computers, subtraction is generally carried out by
(A) 9’s complement (B) 10’s complement (C) 1’s complement (D) 2’s complement
Ans: D
3. The circuit used to store one bit of data is known as
(A) Register (B) Encoder (C) Decoder (D) Flip Flop
Ans: D
4. Which of the following is not a weighted code?
(A) Decimal Number system (B) Excess 3-cod
(C) Binary number System (D) None of these
Ans: B
5. Assembly language
(A) uses alphabetic codes in place of binary numbers used in machine language
(B) is the easiest language to write programs
(C) need not be translated into machine language
(D) None of these
Ans: A
6. The multiplicand register & multiplier register of a hardware circuit implementing booth's algorithm have (11101) & (1100). The result shall be
(A) (812) 10 (B) (-12) 10 (C) (12) 10 (D) (-812) 10
Ans: A
7. What characteristic of RAM memory makes it not suitable for permanent storage?
(A) too slow (B) unreliable (C) it is volatile (D) too bulky
Ans: C
8. (2FAOC) 16 is equivalent to
(A) (195 084) 10 (B) (001011111010 0000 1100) 2 (C) Both (A) and (B) (D) None of these
Ans: B
9. The average time required to reach a storage location in memory and obtain its contents is called the
(A) seek time (B) turnaround time (C) access time (D) transfer time
Ans: C
10. In signed-magnitude binary division, if the dividend is (11100) 2 and divisor is (10011) 2 then the result is
(A) (00100) 2 (B) (10100) 2 (C) (11001) 2 (D) (01100) 2
k. Ans: B

Fill the blank with true or false.
1. EEPROM comes under volatile memory category.

2. Thumb drive or pen drive is semiconductor memory.

3. The control unit generates the appropriate signal at the right moment.

4. While executing a program, CPU brings instruction and data from disk memory.

5. A memory module of capacity 16 * 4 , indicates a storage of 128 bits.

6. A memory module of capacity of 1024 locations, the required address bus size is 10.

7. The program counter PC is used to store the address of the next instruction to be fetched from Accumulator. .

8. For n-bit signed integer, the range of numbers that can be represented is – 2n-1 to 2n+1 .

9. Given a number N in base r having n digits, the (r-1)’s complement of N is defined as

(rn-1) – r.

10. Floating point representation uses mantissa and an exponent part of radix R .

Answers: (1). false (2) true (3) true (4) false (5) false
 (6) true (7) false (8) false (9)false (10) true

 Review Questions

[bookmark: _MON_1523953186][bookmark: _MON_1523953647][bookmark: _MON_1523953672][bookmark: _MON_1523970980]
a. Objective type of questions(Very short notes)<Minimum of ten>
b. Analytical type questions<Minimum of ten>
c. Essay type Questions<As per requirements>
d. Problems<As per required Number>
e. Case study<As per required Number>

 Skill Building Exercises/Assignments
a. Take the mother board of a computer and identify CPU, memory, peripheral ICs, BUS etc.
b. Buy the components of a computer, assemble, install the software and make it to function.
Eg:-	-Prepare a model of something
-Trace something
-Prepare a report on something etc.,
 Previous Questions (Asked by JNTUK from the concerned Unit)

GATE Questions (Where relevant)
Subject is not in gate syllabus
Interview questions (which are frequently asked in a Technical round-Placements)

Real-Word (Live) Examples/Case studies wherever applicable
a. List out the intel CPUs in various generation with their specifications. Write how the performance was improved in each generation.
Suggested “Expert Guest Lectures” (both from in and outside of the campus)
Literature references of Relevant NPTEL Videos/Web/You Tube videos etc.

Reference Text Books / with Journals Chapters etc.
T1: M. Moris Mano (2006), Computer System Architecture, 3rd edition, Pearson/PHI, India.
T2: Carl Hamacher, ZvonksVranesic, SafeaZaky (2002), Computer Organization, 5th edition, McGraw Hill, New Delhi, India
R1: Computer Organization Architecture- William Stallings (2006), 7th edition, PHI/PEARSON.

Unit – II

Lectures for the concerned Unit:

Lecture-1

Lecture-2

Lecture-3

Lecture-4

Lecture-5

	
Lecture-6

Lecture-7

Lecture-8

Lecture-9

Lecture-10

Lecture-11

Test Questions

[bookmark: _MON_1524047647][bookmark: _MON_1526707818][bookmark: _MON_1541518685]

Fill in the blanks using true or false.
1. The operations executed on data stored on memory is called Micro operations.
	
2. The symbolic notation used to describe the micro operation transfers among registers is called register transfer language.

3. The control function is included in the RTL as: P R2 R1. .

4. Arithmetic micro operations perform arithmetic operations on binary data stored in registers.

5. The AND micro operation can be used to selectively set bits of a register.

6. The EX-OR micro operation can be used to selectively complement bits of a register. .

7. The AND micro operation can be used for selectively clearing bits in a register.

8. The instruction read from memory is placed in the register PC .

9. Effective address is defined as the address of the operand in a computation type instruction or the target address in a branch type instruction.

10. Inn hardwired control, control logic is implemented with gates, flip-flops, decoders,and other digital circuits.

Answers: (1) True (2) True (3) false (4) false (5) false (6) True (7) True
 (8) false (9) True (10) True.

a. Multiple choice questions<Minimum of ten>
b. UNIT-II
c.
d. 1. In Reverse Polish notation, expression A*B+C*D is written as
e. (A) AB*CD*+ (B) A*BCD*+ (C) AB*CD+* (D) A*B*CD+
f. Ans: A
g.
h. 2. The addressing mode used in an instruction of the form ADD X Y, is
i. (A) Absolute (B) indirect (C) index (D) none of these
j. Ans: C
k. 3. The BSA instruction is
l. (A) Branch and store accumulator (B) Branch and save return address
m. (C) Branch and shift address (D) Branch and show accumulator
n. Ans: B
o.
p. 4. In a program using subroutine call instruction, it is necessary
q. (A) initialise program counter (B) Clear the accumulator
r. (C) Reset the microprocessor (D) Clear the instruction register
s. Ans: D
t. 5. A Stack-organised Computer uses instruction of
u. (A) Indirect addressing (B) Two-addressing (C) Zero addressing (D) Index addressing
v. Ans: C
w. 6. Logic X-OR operation of (4ACO) H & (B53F) H results
x. (A) AACB (B) 0000 (C) FFFF (D) ABCD
y. Ans: C
z. 7. When CPU is executing a Program that is part of the Operating System, it is said to be in (A) Interrupt mode (B) System mode (C) Half mode (D) Simplex mode
aa. Ans: B
ab. 8. A three input NOR gate gives logic high output only when
ac. (A) one input is high (B) one input is low
ad. (C) two input are low (D) all input are high
ae. Ans: D
af. 9. n bits in operation code imply that there are ___________ possible distinct operators (A) 2n (B) 2n (C) n/2 (D) n2
ag. Ans: B
ah. 10. The instruction ‘ORG O’ is a
ai. (A) Machine Instruction. (B) Pseudo instruction.
aj. (C) High level instruction. (D) Memory instruction.
ak. Ans: B
al.
am.

c.True or False questions<Minimum of ten>
Fill in the blanks with true or false statement.
1. An instruction code is a group of bytes that instruct the computer to perform a specific operation. .
2. The number of bits required for the operation code of an instruction depends on the total number of operations available in the computer. .
3. When the second part of an instruction code specifies an operand, the instruction is said to have direct address .
4. If the memory address register has 12 bits, then the program counter register will have 16 bits. .
5. If the load input of a register is enabled, then it will receive data from the bus during the next clock pulse transition.
6. The timing signals to the control logic can be derived by decoding the output of a sequence counter.
7. The operation of deletion in a stack is called push or push down operation.
8. Arithmetic, logical and shift instructions come under data manipulation instructions.
9. The instruction that transfers program control to a subroutine is known as branch and save address.
10. Interrupts are classified as traps and faults.

Answer: (1) false (2) True (3) false (4) false (5)true (6) true (7) false (8) true
 (9) true (10) false

1.1.2. Review Questions

[bookmark: _MON_1526706220][bookmark: _MON_1541518717][bookmark: _MON_1524049826][bookmark: _MON_1541518771][bookmark: _MON_1524053263]

a. Objective type of questions(Very short notes)<Minimum of ten>
b. What do you mean by RTL?.
c. What do you mean by common bus system?
d. What is the use of 3 state buffers?
e. List out different arithmetic operations.
f. What do you mean by stored program organization.
g. List out registers for a basic computer.
h. What is meant by hardwired control unit?
i. What is meant by micro programmed control?
j. What do you mean by interrupt based data transfer?
k. What is reverse polish notation?

b.Analytical type questions<Minimum of ten>
[image:]

1. Referring to the bus system shown above, explain why each of the following micro operations cannot be executed during a single clock pulse. Specify a sequence of micro operations that will perform the operation.

A. IR M[PC] B. AC AC +TR
 C. DR DR + AC (AC does not change).

2. Referring to the above bus system, the following control inputs are active. For each case , specify the register transfer that will be executed during the next clock transition.

	
	S2
	S1
	S0
	LD of register
	Memory
	Adder

	a.
	1
	1
	1
	IR
	Read
	

	b.
	1
	1
	0
	PC
	
	

	c.
	1
	0
	0
	DR
	Write
	

	d.
	0
	0
	0
	AC
	
	 Add

3. The following register transfers are to be executed in the above system. For each transfer specify: (1) The binary value that must be applied to bus select inputs S2, S1, S0; (2)the register whose load control input must be active(if any); (3) A memory read or write operation (if needed); and (4) the operation in the adder and logic circuit (if any).
[image:]
4.
[image:]
[image:]
5.
[image:]

[image:]

8. [image:]
	
9. [image:]

10. [image:]

l. Essay type Questions<As per requirements>
Essay Type Questions:
UNIT-II
1. What is the need of addressing modes? Explain different types of addressing modes
2. List out the instruction formats used in the processor and discuss with example
3. Explain about machine instruction characteristics
4. What are the differences between direct and indirect addressing instructions? How
many references to memory are needed for each type of instruction to bring an operandin to a process register?
5. Discuss about the register organization in computer
6. Explain about registers for floating point arithmetic operation
7. Discuss about one stage of a decimal arithmetic unit.
8. Discuss about adding of decimal numbers methods.
9. Discuss about the design of the control unit
10. ExplainBooth’salgorithm. ApplyBooth’salgorithm tomultiplythetwodecimal numbers14and12.Assumethemultiplierandmultiplicandtobeof5bitseach

m. Problems<As per required Number> N.A
n. Case study<As per required Number>N.A

 Skill Building Exercises/Assignments
a. Compare Instruction set of 8 bit and 16 bit and 32 bit processors
b. Compare addressing mode of 8 bit, 16 bit and 32 bit processors.
c. Compare features of 8,16 and 32 bit processors

Eg:- 	-Prepare a model of something
-Trace something
-Prepare a report on something etc.,

Previous Questions (Asked by JNTUK from the concerned Unit)

1. A. Consider 4 , 4-bit registers A,B,C and D connected to a common bus system using multiplexers. What has to be done to the bus system so that information can be transferred from any register to any other register?.
B. Represent the following conditional control statements by two register transfer statements with control functions. If (p=1) then (R1 R2) else if (Q =1) then (R1 R3).
2. A digital computer has common bus system for 16 registers of 32 bits each. The bus is constructed with multiplexers.
a. How many selection inputs are there in each multiplexer?
b. What size of multiplexers are needed?
c. How many multiplexers are in the bus?
 (
X +
yz
: AR
AR
 + BR
)3a.Draw the block diagram of the hardware that implements the following statements:

, where AR and BR are 2 n bit registers and x, y and z are control variables. Include the logic gates for the control function.
b. Show the hardware that implements the following statements.Include the logic gates for the control function and a block diagram for the binary counter with a count enable input.
 xyT0 + T1 +y’ T2: AR AR +1 .
4. Design a 4 bit combinational circuit decrementer using 4 full adder circuits.
5. What is wrong with the following register transfer statements?
 (
xT
: AR
 AR , AR
 0
yT
: R1
 R2, R1
 R3
zT
: PC
 AR, PC
 PC + 1
)[image:][image:][image:][image:][image:][image:]

	6. (a) Explain the various Instruction types.

	(b) Draw and explain the flow chart for instruction cycle.

7	(a) Explain various instruction formats with examples.
(b) Write short notes on process organization.
8. (a) List and explain the characteristics of machine instructions
(b) Describe various addressing modes in detail
(c) Give a short note on instruction pipelining

9a. Draw the flowchart for memory reference instructions and explain.
b. Discuss about stack organization with register stack and memory stack.

10a. Design a combinational circuit for i) 4-bit shifter ii) 4-bit decrementer and explain.

 b. Briefly explain the computer registers for basic computer.
11a. Design a combinational circuit for the following arithmetic operations
(i) Addition (ii) Subtraction (iii) Increment (iv) decrement
b. Discuss about instruction codes and stored program organization

 Interview questions (which are frequently asked in a Technical round-Placements)

4.2.10 Interview questions
1. What is micro operation in a digital computer.
2. What is register transfer language?
3. What do you mean by addressing mode?
4. What is indirect address?
5. What is meant by instruction set of a computer?
6. What is the use of PC and IR in a digital computer?
7. What is stack in a computer?
8. Explain instruction format.
9. What is interrupts and interrupt service routine?
10. What is RISC and CISC?

Unit – III

Lecture-1

Lecture-2

Lecture-3

Lecture-4

[bookmark: _GoBack]
Test Questions
a. Fill in the blanks type of questions
Fill in the blanks type questions.
1. The function of control unit in a digital computer is to initiate
Of micro operations.
2. When the control signals are generated by hardware using conventional techniques , the control unit is said to be hardwired.
3. The control variables at any given time can be represented by a string of
Called a control word.
4. A control unit whose control variables are stored in memory is called a micro programmed control unit.
5. A of micro instructions constitutes a micro program.
6. The next address generator in a control unit is sometimes called micro program
7. The data register in a micro programmed control unit is sometimes called
8. .The transformation from the instruction code bits to an address in control memory where the routine is located is referred to as a .
9. are programs that are used by other routines to accomplish a particular task.
10. In a microinstruction format , the CD field select bit conditions.

b. Multiple choice questions
1. Translation from symbolic program into Binary is done in
(A) Two passes. (B) Directly (C) Three passes. (D) Four passes.
Ans: A
2.A microprogram sequencer
(A) generates the address of next micro instruction to be executed.
(B) generates the control signals to execute a microinstruction.
(C) sequentially averages all microinstructions in the control memory.
(D) enables the efficient handling of a micro program subroutine.
Ans: A
3.The operation executed on data stored in registers is called
(A) Macro-operation (B) Micro-operation
(C) Bit-operation (D) Byte-operation
Ans: B
4. Microinstructions are stored in control memory groups, with each group specifying a
(A) Routine (B) Subroutine (C) Vector (D) Address
Ans: A
5. PSW is saved in stack when there is a
(A) interrupt recognised (B) execution of RST instruction
(C) Execution of CALL instruction (D) All of these
Ans: A
6. In a vectored interrupt.
(A) the branch address is assigned to a fixed location in memory.
(B) the interrupting source supplies the branch information to the processor through an interrupt vector.
(C) the branch address is obtained from a register in the processor
(D) none of the above
Ans: B
7. The communication between the components in a microcomputer takes place via the address
 and
(A) I/O bus (B) Data bus (C) Address bus (D) Control lines
Ans: B

8. In a program using subroutine call instruction, it is necessary
(A) initialise program counter (B) Clear the accumulator
(C) Reset the microprocessor (D) Clear the instruction register
Ans: D

9. A microprogram written as string of 0's and 1's is a a. symbolic microinstruction b. binary microinstruction c. symbolic microprogram d. binary microprogram
Ans d

[bookmark: _MON_1526716407][bookmark: _MON_1541518896]c. fill the blanks with true of false statement.
1. A word in control memory location is called microinstruction. .

2. A group of microinstructions constitute micro program. .

3. In dynamic microprogramming, the micro program can be initially loaded from disk.

4. Each machine instruction initiate a microinstruction in control memory.

5. The microinstruction specifies various internal control signals for execution of register micro operations. .

6. Each machine instruction has associated micro program in control memory.

7. While the micro operations are are being executed, the next address is computed in the next address generator circuit and then transferred into the control data register.

8. If we want to establish a different control sequence for the system, we need to simply replace the control ROM with suitable micro programs , in the control unit of micro programmed control unit.

9. The subroutine register in the control unit stores the starting address of the subroutine.

10. Some of the bits in the instruction code is used to reach the starting address of the micro program routine associated with that instruction and this process is called mapping of instruction. .

Answer:
 (1) True (2) false because a sequence of microinstructions constitute a microprogram.
 (3) True (4) false because it initiates a series of microinstructions.
(5) True (6) True (7) false (8)True (9) false 9100 True
Review Questions

a. Objective type of questions(Very short notes)
[bookmark: _MON_1541518936]
1. What is the difference between a microprocessor and a micro program?
2. Is it possible to design a micro program without a micro program?
3. Are all micro programmed computers also microprocessors?
4. Is it possible to have hardwired control associated with a control memory?
5. Explain the difference between hardwired control and micro programmed control.
6. Te4ll the mapping process from instruction code to microinstruction address using ROM.
7. Specify a minimum of 3 components used in a micro program sequencer.
8. What is the advantage of writable control memory?
9. What is the function of CD and AD fields in the Microinstruction Format ?
10. Hat is the use of program counter.

b. Analytical type questions<Minimum of ten>
[bookmark: _MON_1524306091][bookmark: _MON_1541518960][image:]
1. With reference to the above figure, the propagation delay timesare : 1) to generate the next address is 40ns, 2) to transfer the address into the control address register 10ns, 3) to access the control memory ROM 40 ns, 4) to transfer the microinstruction into the control data register 10ns, 5) to perform the required micro operation specified by the control word 40ns. What is the maximum clock frequency that the control can use?.
2. Formulate a mapping procedure that provide 8 consecutive microinstructions for each routine. The operation code has 6 bits and the control memory has 2048 words.
3. Show how a 9-bit micro operation field in a microinstruction can be divided into subfields to specify 46 micro operations. How many micro operations can be specified in one micro instruction?.
4. A computer has 16 registers, an ALU with 32 operations, and a shifter with 8 operations, all connected to a common bus system.
a. Formulate a control word for a micro operation.
b. Specify the number of bits in each field of the control word and give a general encoding scheme.
c. Show the bits of the control word that specify the micro operation R4 R5 + R6.
[image:]
[image:]

[image:]

[image:]
5. The control memory system shown above uses a control memory of size 1024*32. The microinstruction has 3 fields as shown in the diagram. The micro operation field has 16 bits.
a. How many bits are there in the branch address field and the select field?
b. If there are 16 status bits in the system, how many bits of the branch logic are used to select a status bit?
c. How many bits are left to select an input for the multiplexer?
6. The control memory shown above has 4096 words of 24 bits each.
a. How many bits are there in the control address register?
b. How many bits are there in each of the 4 inputs shown going into the multiplexer?
c. What are the number of inputs in each multiplexer and how many multiplexers are needed?
7.
[image:]
8.

[image:]
9. Which control unit you will prefer? Tell the reasons for your decision.
10.
[image:]

[image:]
The micro operation for BSA instruction is given above and the microinstruction format is also given above. Write the symbolic micro program routines for the BSA instruction.

c. Essay Type Questions:
1. Explain about the micro programmed control organization
2. Explain the differences between hardwired control and micro programmed
 Control.
3. Define following terms, micro operations, microinstruction, micro program,
micro code.
4. Explainthevarietyoftechniquesavailableforsequencingofmicroinstructions basedontheformatoftheaddressinformationinthemicroinstruction.
5. ExplaintheOrganization ofthecontrolunittoallowconditionalbranchinginthe micro program
6. Explain how the mapping from an instruction code to a micro instruction address can be done by means of ROM.
7. Draw the block diagram of a micro programmed sequencer and explain its operation.
8. Explain thebasic organizationof amicroprogrammedcontrol unitandthegenerationofcontrolsignalsusingmicroprogram.
d. [bookmark: _MON_1524291289][bookmark: _MON_1541518970][bookmark: _MON_1541518981]Problems
[image:]
1. Using the mapping procedure given above, give the first microinstruction address for the following operation code: (a) 0010; (b) 1011; (c) 1111.
2. Explain how the mapping from an instruction code to microinstruction address can be done by means of a ROM. What is the advantage of this method compared to the method shown in the figure above?.
3.
[image:]
e. [bookmark: _MON_1541518993][bookmark: _MON_1541519013]Case study<As per required Number> N.A.

 Skill Building Exercises/Assignments
Draw a neat chart of micro program sequencer.
Write a report on the functioning of plcs

 Previous Questions (Asked by JNTUK from the concerned Unit)
JNTUK QUESTIONSJ
1. Discussthebasicorganizationofamicroprogrammedcontrolunitandthegenerationof controlsignalsusingmicroprogram
2. Explaintheconceptofmicroprogrammedcontrolunit.
3. (a)Explainthevarietyoftechniquesavailableforsequencingofmicroinstructions basedontheformatoftheaddressinformationinthemicroinstruction.
(b)CompareandContrasthardwiredcontrolunitwithmicroprogrammedcontrolunit.
4. (a)Hardwiredcontrolunitisfasterthanmicro programmedcontrolunit?Justify thisstatement.
(b)Briefly explainthebasic organizationofamicro programmedcontrolunitandthe generationofcontrolsignalsusingmicroprogram
5 a) Explaintheexecutionofmicroinstructionswithaneatdiagram. [5]
 b) Brieflydescribethedesignofahardwiredcontrolunit. [10]
6. Explainthedesignofmicro-programmedcontrolunitindetail. [15]
7 a) ExplaintheOrganization ofthecontrolunittoallowconditionalbranchinginthe microprogram.
b) Whatishardwiredcontrol?Howisitdifferentfrommicroprogrammedcontrol?
	8.Explain thebasic organizationof a micro programmed control unit and the generationofcontrolsignalsusingmicroprogram.
9. a)Givethetypicalhorizontalandverticalmicroinstructionformats.
b)Describehowmicroinstructionsarearrangedincontrolmemoryandhowthey areinterpreted.
10.a)Clearlydistinguishbetween
i. Packed/Unpackedmicroinstructions ii. Hard/Softmicroprogramming
b)Listandbrieflyexplainapplicationsofmicroprogramming.
11.a)Whatarethedesigngoalsforadesignerwhiledecidingahardwiredormicro programmedCUforaCPU.
b)Writeshortnoteson microinstructionsequencing.
12.	a) Definethefollowing:
i. Microoperation
ii. Microinstruction
iii.Microprogram
iv. Controlmemory.
b) Explaintheselectionofaddressforcontrolmemory?
13.a)GivetheCircuitDiagramforMicroProgramSequencefora ControlMemory.
b)Whatisthedifferencebetweena MicroprocessorandaMicroProgram? [8M+8M]
14.a)DiscussindetailaboutAddressSequencing.
b)WritetheSymbolicMicroProgramforBranchandSaveInstructions. [8M+8M]
15.a) DiscussindetailaboutthedecodingofMicroOperationfields.
b) Showhowa9-bitMicrooperationfieldinMicroinstructioncanbedividedintosubfields to specify46 Microoperations?HowmanyMicrooperationscanbespecifiedinone Microinstruction? [8M+8M]
16.a) WhatistheDifferencebetweenaMicroprocessorandaMicroprogram?Isitpossibleto designaMicroprocessorwithoutaMicroprogram?
b)WhatisthefunctionofControlUnit?ExplainthedifferencebetweenHardwiredcontrol andMicroprogrammedcontrol. [8M+8M]
17 a) Explain briefly about the micro programmed control organization. [7]
	 b) Briefly discuss about the design of the control unit[8]
 18. a) Discuss about the process organization in computer.
	 b) Discuss about the register organization in computer.
 19. a) Define following terms, micro operations, microinstruction, micro program, 	micro code.
	 b) Explain the differences between hardwired control and micro programmed
	control.
 20. a) Draw the block diagram of microprogram control organization and explain.
	 b) Discuss how selection of address for control memory.

GATE Questions (Where relevant)
 N.A.
Interview questions (which are frequently asked in a Technical round-Placements)
2. What is micro operation and Micro program?.
3. What is the use of control memory in a microprogrammed control?
4. What is meant by hardwired control?
5. What are the advantages of micro programmed control unit?
6. What are the functions of a micro program sequencer?
 Real-Word (Live) Examples/Case studies wherever applicable
· Micro programmed State Machine design.

· A lot of machine controls with sequential operations can be implemented with control memory. Ex: Automatic machine tools with sequential control

Suggested “Expert Guest Lectures” (both from in and outside of the campus)

Literature references of Relevant NPTEL Videos/Web/You Tube videos etc.
http://nptel.ac.in/video.php?subjectId=106102062
For the following Topics: 	Processor Design Micro programmed Control (33:11)
Any Lab requirements; if so link it to Lab Lesson Plan.
					N.A.
Reference Text Books / with Journals Chapters etc.
Text Book:
M. Moris Mano (2006), Computer System Architecture, 3rd edition, Pearson/PHI, India.
lecture-3'.pptx
Data types

Data = Factual information used for analysis and reasoning

Data when assigned a meaning or interpreted becomes information. Information is a collection of facts or data that is communicated

Binary information in digital computers is stored in memory or processor registers

Data are numbers and other binary- coded information that are operated on to get required computational results

Data types found in registers

1.Numbers used in arithmetic computations. 2. Letters of the alphabets used in data processing 3. other discrete symbols used for specific purposes

All types of data , except binary numbers, are represented in computer registers in binary-coded form. Why?

Number systems

Radix = base

A Number system of base,or radix, r is a system that uses distinct symbols for r digits.

What is the quantity that the numbers represent?

The string of digits 724.5 is interpreted to represent the quantity

7x10 + 2x10 + 4x10 + 5x10

Binary number system uses the radix 2

Octal and hexadecimal conversion

Binary coded octal and hexa decimal numbers with their binary number equivalent are having the same bit combinations

Conversion from binary to/from octal and hexadecimal is strait forward

A binary string in a register may be considered as binary or octal or hexadecimal numbers

It is convenient to specify the content of registers in octal or hexadecimal equivalent

Decimal Representation

Decimal input converted to binary, processed and convert result to decimal for human to understand

Perform operations directly on decimal numbers placed in registers in coded form. Each decimal digit is represented by 4 binary bits

n bits can be used to code upto 2’n elements . A binary code will have some unassigned bit combinations if the no: of elements in the set is not a multiple power of two.

10 decimal digits form such a set. There are six binary bit combinations that are unassigned. Numerous different codes can be obtained by arranging 4 bits in 10 distinct combinations.

The most commonly used bit assignment for decimal digits is the strait binary assignment which is called Binary- coded –decimal (BCD)

What is the difference between the conversion of decimal numbers into binary and the binary coding of decimal numbers?

99 = 1100011 in binary

99 = 1001 1001 in BCD

Alphanumeric Representation

The code must be in binary as registers can only hold binary information. Binary codes merely change the symbols and not the meaning of the discrete elements they represent.The operations specified for digital computers must take into considerations the meaning of the bits stored in registers so that operations are performed on operands of the same type

Complements

Used in digital computers for simlifying subtraction and for logical manipulation. For each base r system, there are two types of complements. 1.the r’s complement 2. The

(r-1)’s complement

(r-1)’s complment.

Given a number N in base r having n digits, (r-1)’s complement of N is defined as (r’n -1) – N

The 9’s complement of a decimal number is obtained by subtracting each digit from 9.The 1’s complement of a binary number is obtained by subtracting each digit from 1(by changing 1’s into 0’s and 0’s into 1’s)

6

r’s complement

The r’s complement of an n digit number N in base r is defined as r’n-N for N ≠0 for N=0. r’s complement is obtained by adding 1 to (r-1)’s complement.

10’s complement can be obtained by leaving all least significant 0’s unchanged, subtracting the first non-zero least significant digit from 10 and then subtracting all higher significant digits from 9

.

2’s complement can be formed by leaving all least significant zeros and the first 1 unchanged, and then replacing 1’s by 0’s and 0’s by 1in all other higher significant bits

If the original number N contains a radix point, it should be removed temporarily to form the complement. The radix point is then restored to the complemented number in the same relative position

Subtraction of unsigned numbers

The subtraction of two n-digit unsigned numbers, M – N (N≠0) in base r can be done as follows:

1. Add the minuend M to the r’s complement of the subtrahend N.This performs M + (r’n –N) = M-N + r’n

2.If M ≥N, the sum will produce an end carry r’n which is discarded and what is left is the result M – N

 3. If M < N, the sum does not produce an end carry and is equal to r’n – (N –M), which is the r’s complement of (N – M). To obtain the answer in familiar form , take the r’s complement of the sum and place a negative sign in front

 X = 1010100

2’s complement of Y = 0111101

 sum = 10010001

Answer is obtained by discarding end carry

X – Y = 0010001

 Y = 000011

2’s complement of X = 0101100

Sum Y – X = 1101111

Answer is negative of 2’s complement of 1101111

Fixed point representation

The leftmost bit is used to represent sign of a number; 0 for + ve nos. and 1 for – ve nos.

In addition to the sign, a number may have a binary or decimal point. the position of the binary point is needed to represent fractions, integers or mixed integer- fraction numbers. There are two ways of specifying the position of the binary point in a register, that is , by giving it a fixed position or by employing a floating point representation

The fixed point method assumes that the binary point is always fixed in one 2 positions most widely used a re (1) A binary point in the extreme left of the register to make the stored number a fraction and (2) a binary point in the extreme right of the register to make the stored number an integer. In eithercase, the binary point is not actually present, but it’s presence is assumed from the fact that the number stored in the register is treated as a fraction or as an integer

The floating point representation uses a second register to store a number that designates the position of the decimal point in the first register

 Signed Numbers- Integer representation

+ ve integers are represented by sign-mqagnitude form.

- ve integers can be represented in one of 3 possible ways.

1. Signed-magnitude representation

2. Signed 1’s complement representation

3. signed 2’s complement representation

Sign-magn. System is not suitable for computer arithmetic. 1’s complement method has two representation of 0(+0 and – 0) and hence is not used for arithetic operation

-14 is represented as below

1.sign-mag 1 0001110

2.sign-1’s comp

 1 1110001

3.Sign-2’s comp

 1 1110010

In complement method, negative number is represented as 1’s or 2’s complement of its positive value

1’s complement of -14 is obtained by complementing all the bits of +14 including the sign bit

Arithmetic addition-2’s complement method

The rule for adding numbers in the signed 2,s complement system does not reqire a comparison or subtraction, only addition and complmentation. The rule is: Add the two numbers, including their sign bits, and discard any carry out of the sign bit position

Examples

+6 0000 0110 -6 1111 1010

+13 0000 1101 -13 1111 0011

--------------------- --------------------------

+19 0001 0011 -19 1110 1101

-6 1111 1010

 +13 0000 1101

+7 0000 0111

+6 0000 0110

-13 1111 0011

-7 1111 1001

Arithmetic subtraction

The rule is as below.

Take the 2’s complement of the subtrahend (including the sign bit)and add it to the minuend (including the sign bit).A carry out of the sign bit position is discarded.

(±A) – (+B) = (±A) + (-B)

(±A) – (-B) = (±A) + (+B)

Overflow

When two unsigned numbers are added, an overflow is detected from the end carry out of the most significant position. In the case of signed numbers, the leftmost digit always represents the sign, and negative numbers are in 2’s complement form. When two signed numbers are added, the sign bit is treated as part of the number and the end carry does not indicate an overflow.

An overflow may occur if the two numbers added are both positive or both negative. An overflow can be detected by observing the carry into the sign bit position and the carry out of the sign bit position. when these two carries are not equal, an overflow condition is produced.

Floating point representation

It has two parts.

1.Mantissa –A signed fixed point number

2. Exponent- It designates the position of the decimal point.

The fixed point mantissa can be a fraction or integer.

Ex. Decimal number +6132.789 is rep. as

+0.6132789 +04

First one is fraction part and the seccond one is exponent.The exponent indicates that the actual position of the decimal point is 4 positions to the right of the idicated decimal point in the fraction.

This rep. is equivalent to the scientific notation +0.6132789 x 10’4

Floating point is always interpreted to represent a number as below.

M x r’e . Only the mantissa m and exponent e are physically represented in the register including their signs.

The radix r and the radix – point positon of the mantissa are always assumed.

A binary number +1001.11 is represented with an 8-bit fractionand 6-bit exponent as follows

Fraction =01001110

Exponent = 000100

The fraction has a 0 in the leftmost position to denote positive.T he binary point of the fraction follows sign bit but is not shown in the register. The exponent has the equivalent binary number+4. the floating point number is equivalent to

 m x 2’e = + (.1001110) x 2’4

A floating point number is said to be normalized if the most significant digit of the mantissa is non zero.

Ex. The decimal number 350 is normalized but 00035 is not

00011010 is not normalized but 11010000 is normalized. The exponent is subtracted by 3 to keep the same value.

Standard forms of floating point numbers

1.ANSI

2. IEEE

The ANSI 32-bit floating point numbers in byte format with examples are as below

Byte1= SEEEE –Exponent

Byte2 = .MMMMMMMM

Byte3= MMMMMMMM

Byte4= MMMMMMMM

Byte 2 ,3,4 rep. mantissa.

S=sign of mantissa, E=exponent bits in 2’s complement, M= mantissa bits

Example

13= 1101= 0.1101 x 2’4

= 00000100 11010000 00000000 00000000

-17 = -10001= - 0.10001x 2’5

= 10000101 10001000 00000000 00000000

-0.125 = -0.001 x 2’-2

= 11111110 10000000 00000000 00000000

Typical Input Devices

Input-output Devices

Error detection codes

image3.png

Typical Input Devices.

Device: Advanages Disdanazes

Likes | Eifcien o nputing Relatvely o spcd
Kopout | = b
o PO Esyione Nk mch e

Move | Eifcntforion- | Necds much oftvare
Voue |arowdon buscdiputand swppon

ek e seecion

Usedfor Assboe. Nesde i softare
foysick | gamesand | Fast- support

Coniml
Gatics | Grphics | bpu pictarcand | Skow
sblaipu fchnd shech

oy Fustnput f grapics i mapped rapbics:
sammer S Es

User Nobandsnecded | Linicd vobalary,
Voceinput | fcndly Speech ecomition

St ecded

image4.png

“Typial Output Devices
Dovke [Man e
st e,
Disply Scrcen both et i
snphics
mpact .
Liepier Ve .
Dotmati | Verate et and
poer e
o
Inkie pimer | G
et ol
High qulty et
Lasrpriner | an zphis
High gy
Powr e
Ve ouput Nt forcerin

Input-Output Devices (contid)

Data types

Py ——

image57.emf

image58.emf

image59.emf

image60.emf

image61.emf

image62.emf

image63.emf

image64.emf

image65.emf
JNTUK questions unit-2.docx

JNTUK questions unit-2.docx
1. A. Consider 4 , 4-bit registers A,B,C and D connected to a common bus system using multiplexers. What has to be done to the bus system so that information can be transferred from any register to any other register?.

B. Represent the following conditional control statements by two register transfer statements with control functions. If (p=1) then (R1 R2) else if (Q =1) then (R1 R3).

2. A digital computer has common bus system for 16 registers of 32 bits each. The bus is constructed with multiplexers.

a. How many selection inputs are there in each multiplexer?

b. What size of multiplexers are needed?

c. How many multiplexers are in the bus?

 (
X +
yz
: AR
AR
 + BR
)3a.Draw the block diagram of the hardware that implements the following statements:

, where AR and BR are 2 n bit registers and x, y and z are control variables. Include the logic gates for the control function.

b. Show the hardware that implements the following statements. Include the logic gates for the control function and a block diagram for the binary counter with a count enable input.

 xyT0 + T1 +y’ T2 : AR AR +1 .

4. Design a 4 bit combinational circuit decrementer using 4 full adder circuits.

5. What is wrong with the following register transfer statements?

 (
xT
: AR
 AR , AR
 0
yT
: R1
 R2, R1
 R3
zT
: PC
 AR, PC
 PC + 1
)[image:][image:][image:][image:][image:][image:]

		6. (a) Explain the various Instruction types.

		 (b) Draw and explain the flow chart for instruction cycle.

7	(a) Explain various instruction formats with examples.

(b) Write short notes on process organization.

8. (a) List and explain the characteristics of machine instructions

(b) Describe various addressing modes in detail

(c) Give a short note on instruction pipelining

9a. Draw the flowchart for memory reference instructions and explain.

b. Discuss about stack organization with register stack and memory stack.

10a. Design a combinational circuit for i) 4-bit shifter ii) 4-bit decrementer and explain.

 b. Briefly explain the computer registers for basic computer.

11a. Design a combinational circuit for the following arithmetic operations

(i) Addition (ii) Subtraction (iii) Increment (iv) decrement

b. Discuss about instruction codes and stored program organization

image1.emf

image4.emf
lecture-4.pptx

image66.emf

image67.emf
4.2.10.docx

4.2.10.docx
4.2.10 Interview questions

1. What is micro operation in a digital computer.

2. What is register transfer language?

3. What do you mean by addressing mode?

4. What is indirect address?

5. What is meant by instruction set of a computer?

6. What is the use of PC and IR in a digital computer?

7. What is stack in a computer?

8. Explain instruction format.

9. What is interrupts and interrupt service routine?

10. What is RISC and CISC?

image68.emf
unit-3, L1, control memory.pptx

unit-3, L1, control memory.pptx
Control Memory

COMPARISON OF CONTROL UNIT IMPLEMENTATIONS

Implementation of Control Unit

Control Unit Implementation

Combinational Logic Circuits (Hard-wired)‏

Microprogram

I R

Status F/Fs

Control Data

Combinational

Logic Circuits

Control

Points

CPU

Memory

Timing State

Ins. Cycle State

Control Unit's State

Status F/Fs

Control Data

Next Address

Generation

Logic

C

S

A

R

Control

Storage

(-program

 memory)‏

M

e

m

o

r

y

I R

C

S

D

R

C

P

s

CPU

D

}

TERMINOLOGY

Microprogram

 - Program stored in memory that generates all the control signals required

	to execute the instruction set correctly

 - Consists of microinstructions

Microinstruction

 - Contains a control word and a sequencing word

 	Control Word - All the control information required for one clock cycle

 	Sequencing Word - Information needed to decide

 		the next microinstruction address

 - Vocabulary to write a microprogram

Control Memory(Control Storage: CS)‏

 - Storage in the microprogrammed control unit to store the microprogram

Writeable Control Memory(Writeable Control Storage:WCS)‏

 - CS whose contents can be modified

 	-> Allows the microprogram can be changed

 	-> Instruction set can be changed or modified

Dynamic Microprogramming

 - Computer system whose control unit is implemented with

	a microprogram in WCS

 - Microprogram can be changed by a systems programmer or a user

TERMINOLOGY

Sequencer (Microprogram Sequencer)‏

 A Microprogram Control Unit that determines

	the Microinstruction Address to be executed

 	in the next clock cycle

 - In-line Sequencing

 - Branch

 - Conditional Branch

 - Subroutine

 - Loop

 - Instruction OP-code mapping

Control Memory

image69.emf
Unit-3, L2, address sequencing.pptx

Unit-3, L2, address sequencing.pptx
Address sequencing

MICROINSTRUCTION SEQUENCING

Sequencing Capabilities Required in a Control Storage

- Incrementing of the control address register

- Unconditional and conditional branches

- A mapping process from the bits of the machine

 	instruction to an address for control memory

- A facility for subroutine call and return

Sequencing

Instruction code

Mapping

logic

Multiplexers

Control memory (ROM)‏

Subroutine

register

(SBR)‏

Branch

logic

Status

bits

Microoperations

Control address register

(CAR)‏

Incrementer

MUX

select

select a status

bit

Branch address

MICROINSTRUCTION SEQUENCING

Sequencing Capabilities Required in a Control Storage

- Incrementing of the control address register

- Unconditional and conditional branches

- A mapping process from the bits of the machine

 	instruction to an address for control memory

- A facility for subroutine call and return

Sequencing

Instruction code

Mapping

logic

Multiplexers

Control memory (ROM)‏

Subroutine

register

(SBR)‏

Branch

logic

Status

bits

Microoperations

Control address register

(CAR)‏

Incrementer

MUX

select

select a status

bit

Branch address

CONDITIONAL BRANCH

Unconditional Branch

 Fixing the value of one status bit at the input of the multiplexer to 1

Sequencing

Conditional Branch

 If Condition is true, then Branch (address from

 		the next address field of the current microinstruction)‏

 		else Fall Through

 Conditions to Test: O(overflow), N(negative),

 Z(zero), C(carry), etc.

Control address register

Control memory

MUX

Load address

Increment

Status

(condition)‏

bits

Micro-operations

Condition select

Next address

...

MAPPING OF INSTRUCTIONS

Sequencing

ADD Routine

AND Routine

LDA Routine

STA Routine

BUN Routine

Control

Storage

0000

0001

0010

0011

0100

OP-codes of Instructions

 ADD

 AND

 LDA

 STA

 BUN

0000

0001

0010

0011

0100

.

.

.

Direct Mapping

Address

10 0000 010

10 0001 010

10 0010 010

10 0011 010

10 0100 010

Mapping

Bits

10 xxxx 010

ADD Routine

Address

AND Routine

LDA Routine

STA Routine

BUN Routine

MAPPING OF INSTRUCTIONS TO MICROROUTINES

Mapping function implemented by ROM or PLA

OP-code

Mapping memory

(ROM or PLA)‏

Control address register

Control Memory

 Mapping from the OP-code of an instruction to the

 address of the Microinstruction which is the starting

 microinstruction of its execution microprogram

1 0 1 1 Address

OP-code

Mapping bits

 Microinstruction

 address

 0 x x x x 0 0

 0 1 0 1 1 0 0

 Machine

Instruction

Sequencing

Address sequencing

image70.emf
Unit-3, L3, Microprogram example.pptx

Unit-3, L3, Microprogram example.pptx
Micro program Example

MICROPROGRAM EXAMPLE

Microprogram

Computer Configuration

MUX

AR

10

0

PC

10

0

Address

Memory

2048 x 16

MUX

DR

15

0

Arithmetic

logic and

shift unit

AC

15

0

SBR

6

0

CAR

6

0

Control memory

128 x 20

Control unit

MACHINE INSTRUCTION FORMAT

Microinstruction Format

Microprogram

EA is the effective address

Symbol OP-code Description

ADD	 0000	AC AC + M[EA]

BRANCH	 0001 	if (AC < 0) then (PC  EA)‏

STORE	 0010	M[EA]  AC

EXCHANGE	 0011	AC M[EA], M[EA]  AC

Machine instruction format

I

Opcode

15

14

11

10

Address

0

Sample machine instructions

F1

F2

F3

CD

BR

AD

3

3

3

2

2

7

F1, F2, F3: Microoperation fields

CD: Condition for branching

BR: Branch field

AD: Address field

MICROINSTRUCTION FIELD DESCRIPTIONS - F1,F2,F3

F1	Microoperation	Symbol

000	None	NOP

001	AC  AC + DR	ADD

010	AC  0	CLRAC

011	AC  AC + 1	INCAC

100	AC  DR	DRTAC

101	AR  DR(0-10)	DRTAR

110	AR  PC	PCTAR

111	M[AR]  DR	WRITE

Microprogram

F2	Microoperation	Symbol

000	None	NOP

001	AC  AC - DR	SUB

010	AC  AC  DR	OR

011	AC  AC  DR	AND

100	DR  M[AR]	READ

101	DR  AC	ACTDR

110	DR  DR + 1	INCDR

111	DR(0-10)  PC	PCTDR

F3	Microoperation	Symbol

000	None	NOP

001	AC  AC  DR	XOR

010	AC  AC’	COM

011	AC  shl AC	SHL

100	AC  shr AC	SHR

101	PC  PC + 1	INCPC

110	PC  AR	ARTPC

111	Reserved

MICROINSTRUCTION FIELD DESCRIPTIONS - CD, BR

CD	Condition Symbol	 Comments

00	Always = 1	U	Unconditional branch

01	DR(15)	 I	Indirect address bit

10	AC(15)	S	Sign bit of AC

11	AC = 0	Z	Zero value in AC

BR Symbol	 Function

00	 JMP CAR  AD if condition = 1

		 CAR  CAR + 1 if condition = 0

01	 CALL CAR  AD, SBR  CAR + 1 if condition = 1

		 CAR  CAR + 1 if condition = 0

10	 RET CAR  SBR (Return from subroutine)‏

11	 MAP CAR(2-5)  DR(11-14), CAR(0,1,6)  0

Microprogram

SYMBOLIC MICROINSTRUCTIONS

 Symbols are used in microinstructions as in assembly language

 A symbolic microprogram can be translated into its binary equivalent 	by a microprogram assembler.

Sample Format

 five fields: 	label; micro-ops; CD; BR; AD

Label: 		may be empty or may specify a symbolic 	 		address terminated with a colon

Micro-ops: consists of one, two, or three symbols

 			separated by commas

CD: 	one of {U, I, S, Z}, where	U: Unconditional Branch

 			I: Indirect address bit

 			S: Sign of AC

 	 		Z: Zero value in AC

BR: 	one of {JMP, CALL, RET, MAP}

AD: 	one of {Symbolic address, NEXT, empty}

Microprogram

SYMBOLIC MICROPROGRAM - FETCH ROUTINE

AR PC

DR  M[AR], PC  PC + 1

AR  DR(0-10), CAR(2-5)  DR(11-14), CAR(0,1,6)  0

Symbolic microprogram for the fetch cycle:

ORG 64

PCTAR U JMP NEXT

READ, INCPC U JMP NEXT

DRTAR U MAP

FETCH:

Binary equivalents translated by an assembler

1000000 110 000 000 00 00 1000001

1000001 000 100 101 00 00 1000010

1000010 101 000 000 00 11 0000000

Binary

address F1 F2 F3 CD BR AD

Microprogram

During FETCH, Read an instruction from memory

and decode the instruction and update PC

Sequence of microoperations in the fetch cycle:

SYMBOLIC MICROPROGRAM

 Control Storage: 128 20-bit words

 The first 64 words: Routines for the 16 machine instructions

 The last 64 words: Used for other purpose (e.g., fetch routine and other subroutines)‏

 Mapping: OP-code XXXX into 0XXXX00, the first address for the 16 routines are

 0(0 0000 00), 4(0 0001 00), 8, 12, 16, 20, ..., 60

Microprogram

ORG 0

NOP

READ

ADD

ORG 4

NOP

NOP

NOP

ARTPC

ORG 8

NOP

ACTDR

WRITE

ORG 12

NOP

READ

ACTDR, DRTAC

WRITE

ORG 64

PCTAR

READ, INCPC

DRTAR

READ

DRTAR

 I

U

U

S

U

 I

U

 I

U

U

 I

U

U

U

U

U

U

U

U

CALL

JMP

JMP

JMP

JMP

CALL

JMP

CALL

JMP

JMP

CALL

JMP

JMP

JMP

JMP

JMP

MAP

JMP

RET

INDRCT

NEXT

FETCH

OVER

FETCH

INDRCT

FETCH

INDRCT

NEXT

FETCH

INDRCT

NEXT

NEXT

FETCH

NEXT

NEXT

NEXT

ADD:

BRANCH:

OVER:

STORE:

EXCHANGE:

FETCH:

INDRCT:

Label Microops CD BR AD

Partial Symbolic Microprogram

This microprogram can be implemented using ROM

Microprogram

 Address		 	Binary Microinstruction

Micro Routine Decimal Binary 	F1 	F2 	F3 	CD 	BR 	 AD

	ADD		0 0000000	000	000 	000 	01 	01 	1000011

 		1 0000001 	000 	100 	000 	00 	00 	0000010

	 	2 0000010 	001 	000 	000 	00 	00 	1000000

	 	3 0000011 	000 	000 	000 	00 	00 	1000000

	BRANCH	 	4 0000100 	000 	000 	000 	10 	00 	0000110

 	5 0000101 	000 	000 	000 	00 	00 	1000000

 	6 0000110 	000 	000 	000 	01 	01 	1000011

 	7 0000111 	000 	000 	110 	00 	00 	1000000

 	STORE	 	8 0001000 	000 	000 	000 	01 	01 	1000011

 	9 0001001 	000 	101 	000 	00 	00 	0001010

 		10 0001010 	111 	000 	000 	00 	00 	1000000

 		11 0001011 	000 	000 	000 	00 	00 	1000000

 	EXCHANGE 	12 0001100 	000 	000 	000 	01 	01 	1000011

 		13 0001101 	001 	000 	000 	00 	00 	0001110

 		14 0001110 	100 	101 	000 	00 	00 	0001111

 		15 0001111 	111 	000 	000 	00 	00 	1000000

	FETCH 	64 1000000 	110 	000 	000 	00 	00 	1000001

	 		65 1000001 	000 	100 	101 	00 	00 	1000010

 		66 1000010 	101 	000 	000 	00 	11 	0000000

	INDRCT 	67 1000011 	000 	100 	000 	00 	00 	1000100

 		68 1000100 	101 	000 	000 	00 	10 	0000000

BINARY MICROPROGRAM

MICROPROGRAM SEQUENCER
- NEXT MICROINSTRUCTION ADDRESS LOGIC -

Design of Control Unit

Subroutine

CALL

 MUX-1 selects an address from one of four sources and routes it into a CAR

 - In-Line Sequencing  CAR + 1

 - Branch, Subroutine Call  CS(AD)‏

 - Return from Subroutine  Output of SBR

 - New Machine instruction  MAP

3

2

1

0

S

S

1

0

MUX1

External

(MAP)‏

SBR

L

Incrementer

CAR

Clock

Address

source

selection

In-Line

RETURN form Subroutine

Branch, CALL Address

Control Storage

S1S0 Address Source

 00 CAR + 1, In-Line

 01 SBR RETURN

 10 CS(AD), Branch or CALL

 11 MAP

MICROPROGRAM SEQUENCER
- CONDITION AND BRANCH CONTROL -

Design of Control Unit

Input

logic

I0

I1

T

MUX2

Select

1

I

S

Z

Test

CD Field of CS

From

CPU

BR field

of CS

L(load SBR with PC) for subroutine Call

S0

S1

for next address

selection

 I0I1T Meaning Source of Address S1S0 L

 000 In-Line CAR+1 00 0

 001 JMP CS(AD) 10 0

 010 In-Line CAR+1 00 0

 011 CALL CS(AD) and SBR <- CAR+1 10 1

 10x RET SBR 01 0

 11x MAP DR(11-14) 11 0

L

S0 = I0

S1 = I0I1 + I0’T

L = I0’I1T

Input Logic

image1.jpeg

MICRO PROGRAM
EXAMPLE

image71.emf
Unit-4, L4, Design of control unit.pptx

lecture-4.pptx
Subtraction of unsigned numbers

The subtraction of two n-digit unsigned numbers, M – N (N≠0) in base r can be done as follows:

1. Add the minuend M to the r’s complement of the subtrahend N.This performs M + (r’n –N) = M-N + r’n

2.If M ≥N, the sum will produce an end carry r’n which is discarded and what is left is the result M – N

 3. If M < N, the sum does not produce an end carry and is equal to r’n – (N –M), which is the r’s complement of (N – M). To obtain the answer in familiar form , take the r’s complement of the sum and place a negative sign in front

 X = 1010100

2’s complement of Y = 0111101

 sum = 10010001

Answer is obtained by discarding end carry

X – Y = 0010001

 Y = 000011

2’s complement of X = 0101100

Sum Y – X = 1101111

Answer is negative of 2’s complement of 1101111

Fixed point representation

The leftmost bit is used to represent sign of a number; 0 for + ve nos. and 1 for – ve nos.

In addition to the sign, a number may have a binary or decimal point. the position of the binary point is needed to represent fractions, integers or mixed integer- fraction numbers. There are two ways of specifying the position of the binary point in a register, that is , by giving it a fixed position or by employing a floating point representation

The fixed point method assumes that the binary point is always fixed in one 2 positions most widely used a re (1) A binary point in the extreme left of the register to make the stored number a fraction and (2) a binary point in the extreme right of the register to make the stored number an integer. In eithercase, the binary point is not actually present, but it’s presence is assumed from the fact that the number stored in the register is treated as a fraction or as an integer

The floating point representation uses a second register to store a number that designates the position of the decimal point in the first register

 Signed Numbers- Integer representation

+ ve integers are represented by sign-mqagnitude form.

- ve integers can be represented in one of 3 possible ways.

1. Signed-magnitude representation

2. Signed 1’s complement representation

3. signed 2’s complement representation

Sign-magn. System is not suitable for computer arithmetic. 1’s complement method has two representation of 0(+0 and – 0) and hence is not used for arithetic operation

-14 is represented as below

1.sign-mag 1 0001110

2.sign-1’s comp

 1 1110001

3.Sign-2’s comp

 1 1110010

In complement method, negative number is represented as 1’s or 2’s complement of its positive value

1’s complement of -14 is obtained by complementing all the bits of +14 including the sign bit

Arithmetic addition-2’s complement method

The rule for adding numbers in the signed 2,s complement system does not reqire a comparison or subtraction, only addition and complmentation. The rule is: Add the two numbers, including their sign bits, and discard any carry out of the sign bit position

Examples

+6 0000 0110 -6 1111 1010

+13 0000 1101 -13 1111 0011

--------------------- --------------------------

+19 0001 0011 -19 1110 1101

-6 1111 1010

 +13 0000 1101

+7 0000 0111

+6 0000 0110

-13 1111 0011

-7 1111 1001

Arithmetic subtraction

The rule is as below.

Take the 2’s complement of the subtrahend (including the sign bit)and add it to the minuend (including the sign bit).A carry out of the sign bit position is discarded.

(±A) – (+B) = (±A) + (-B)

(±A) – (-B) = (±A) + (+B)

Overflow

When two unsigned numbers are added, an overflow is detected from the end carry out of the most significant position. In the case of signed numbers, the leftmost digit always represents the sign, and negative numbers are in 2’s complement form. When two signed numbers are added, the sign bit is treated as part of the number and the end carry does not indicate an overflow.

An overflow may occur if the two numbers added are both positive or both negative. An overflow can be detected by observing the carry into the sign bit position and the carry out of the sign bit position. when these two carries are not equal, an overflow condition is produced.

Floating point representation

It has two parts.

1.Mantissa –A signed fixed point number

2. Exponent- It designates the position of the decimal point.

The fixed point mantissa can be a fraction or integer.

Ex. Decimal number +6132.789 is rep. as

+0.6132789 +04

First one is fraction part and the seccond one is exponent.The exponent indicates that the actual position of the decimal point is 4 positions to the right of the idicated decimal point in the fraction.

This rep. is equivalent to the scientific notation +0.6132789 x 10’4

Floating point is always interpreted to represent a number as below.

M x r’e . Only the mantissa m and exponent e are physically represented in the register including their signs.

The radix r and the radix – point positon of the mantissa are always assumed.

A binary number +1001.11 is represented with an 8-bit fractionand 6-bit exponent as follows

Fraction =01001110

Exponent = 000100

The fraction has a 0 in the leftmost position to denote positive.T he binary point of the fraction follows sign bit but is not shown in the register. The exponent has the equivalent binary number+4. the floating point number is equivalent to

 m x 2’e = + (.1001110) x 2’4

A floating point number is said to be normalized if the most significant digit of the mantissa is non zero.

Ex. The decimal number 350 is normalized but 00035 is not

00011010 is not normalized but 11010000 is normalized. The exponent is subtracted by 3 to keep the same value.

Standard forms of floating point numbers

1.ANSI

2. IEEE

The ANSI 32-bit floating point numbers in byte format with examples are as below

Byte1= SEEEE –Exponent

Byte2 = .MMMMMMMM

Byte3= MMMMMMMM

Byte4= MMMMMMMM

Byte 2 ,3,4 rep. mantissa.

S=sign of mantissa, E=exponent bits in 2’s complement, M= mantissa bits

Example

13= 1101= 0.1101 x 2’4

= 00000100 11010000 00000000 00000000

-17 = -10001= - 0.10001x 2’5

= 10000101 10001000 00000000 00000000

-0.125 = -0.001 x 2’-2

= 11111110 10000000 00000000 00000000

Subtraction of unsigned numbers

Unit-4, L4, Design of control unit.pptx
Design of control Unit

MICROPROGRAM SEQUENCER

Design of Control Unit

3

2

1

0

S1

MUX1

External

(MAP)‏

SBR

Load

Incrementer

CAR

Input

logic

I0

T

MUX2

Select

1

I

S

Z

Test

Clock

Control memory

Microops

CD

BR

AD

L

I1

S0

. . .

. . .

MICROINSTRUCTION FORMAT

Microinstruction Format

Information in a Microinstruction

 - Control Information

 - Sequencing Information

 - Constant

 Information which is useful when feeding into the system

These information needs to be organized in some way for

 - Efficient use of the microinstruction bits

 - Fast decoding

Field Encoding

 - Encoding the microinstruction bits

 - Encoding slows down the execution speed

 due to the decoding delay

 - Encoding also reduces the flexibility due to

 the decoding hardware

HORIZONTAL AND VERTICAL
MICROINSTRUCTION FORMAT

Horizontal Microinstructions

 Each bit directly controls each micro-operation or each control point

 Horizontal implies a long microinstruction word

 Advantages: Can control a variety of components operating in parallel.

 			--> Advantage of efficient hardware utilization

 Disadvantages: Control word bits are not fully utilized

 			--> CS becomes large --> Costly

Vertical Microinstructions

 A microinstruction format that is not horizontal

 Vertical implies a short microinstruction word

 Encoded Microinstruction fields

 	--> Needs decoding circuits for one or two levels of decoding

Microinstruction Format

 One-level decoding

Field A

2 bits

2 x 4

Decoder

3 x 8

Decoder

Field B

3 bits

1 of 4

1 of 8

Two-level decoding

Field A

2 bits

2 x 4

Decoder

6 x 64

Decoder

Field B

6 bits

Decoder and

selection logic

NANOSTORAGE AND NANOINSTRUCTION

The decoder circuits in a vertical microprogram

storage organization can be replaced by a ROM

	=> Two levels of control storage

 	First level - Control Storage

 	Second level - Nano Storage

Two-level microprogram

 	First level

 -Vertical format Microprogram

 	Second level

 -Horizontal format Nanoprogram

 - Interprets the microinstruction fields, thus converts a vertical 			microinstruction format into a horizontal 					nanoinstruction format.

Usually, the microprogram consists of a large number of short 			microinstructions, while the nanoprogram contains fewer words 	with longer nanoinstructions.

Control Storage Hierarchy

TWO-LEVEL MICROPROGRAMMING - EXAMPLE

* Microprogram: 2048 microinstructions of 200 bits each

* With 1-Level Control Storage: 2048 x 200 = 409,600 bits

* Assumption:

 256 distinct microinstructions among 2048

* With 2-Level Control Storage:

 Nano Storage: 256 x 200 bits to store 256 distinct nanoinstructions

 Control storage: 2048 x 8 bits

 To address 256 nano storage locations 8 bits are needed

* Total 1-Level control storage: 409,600 bits

 Total 2-Level control storage: 67,584 bits (256 x 200 + 2048 x 8)‏

Control Storage Hierarchy

Control address register

11 bits

Control memory

2048 x 8

Microinstruction (8 bits)‏

Nanomemory address

Nanomemory

256 x 200

Nanoinstructions (200 bits)‏

DESIGN OF CONTROL
UNIT

image72.emf

image73.emf

image74.emf

image75.emf

image76.emf

image77.emf

image78.emf

image79.emf

image80.emf

image5.emf
Floating point representation.docx

image81.emf

image82.emf

Floating point representation.docx
Floatinpoint number representation:

Fixed point numbers represents integers and floating point numbers represent real numbers.

Numeric Format:

A number expressed in scientific notation has a sign, a fraction or significant(or mantissa) and an expoenent.

Ex: The number is : -1234.5678

Scientific notation is : -1.2345678 * 103. Here the sign is negative, the significant is 1.2345678 and exponent is 3 and the base is 10. Computers use base as 2.

Disadvantages of Scientific notation:

Most of the numbers can be expressed in many different ways. Ex: -1.2345678*103 = -1234567.8* 10-3 = etc. Computers are more efficient and have much simpler hardware if each number is uniquely represented.

Normalization as Solution to the problem:

The floating point number must be normalzed, that is, each number’s significant is a fraction with no leading zeros. Thus the only valid floating point representation for - 1234.5678 is -.12345678* 104 . Note IEEE 754 uses an exception for this rule.

Special cases:

The number zero has only zeros in its significand and can not be normaliuzed.For this reason a special value is assigned to zero. Arithmetic algorithms must explicitly check for zero values and treat them as special cases. +∞ and - ∞ also have special representation and require special treatment.

NaN:

NaN means Not a Number. It represents the result of illegal operations, such as ∞ ÷ ∞ or taking the square root of a negative number. As with zero and infinity, NaN requires a special treatment in floating point arithmetic algorithms.

A predefined format for computer storage of floating point number:

Each number is stored in it’s normal form.

Take the number: X = - 1234.5678 ; That is X= XS XFXE

XS is the sign of X; XF is it’s significand and XE is it’s exponent

Since the radix point is located to the left of the most significant bit of the significand , the radix point is not stored.Thus the value X = -1234.5678 would be stored as XS = 1, XF = 12345678 and XE = 4

Biasing:

In the above representation foe exponent , there is no sign bit for exponent. We can use 2’s complement form but prevalent practice is to use biasing.

If XE has 4 bits, then it can represent 16 items. That is the numbers from -8 to +7. To do this, a set bias value is added to the actual exponent. The result is ten stored in XE.. For this the bias should be set to 8.

The smallest possible exponent, -8, is represented as -8+bias = -8+8=0 or 0000 in binary.

The largest possible exponent, +7, is represented as +7+ bias =+7+8= 15= 1111 in binary. The arithmetic algorithms must account for the bias when generating their results.

Characteristics of floating point numbers:

The characteristics are 1. Precision 2. Gap 3. Range

Precision:

It characterizes how precise a floating point value can be. It is defined as the number of bits in the significand. The greater the number of bits in the significand, the greater is the CPU’s precision and the more precise is it’s value. Many CPUs have 2 representations for floating point numbers. They are called single precision and double precision here double precision has twice the number of bits.

Gap:

The gap is the difference between two adjacent values. It’s value depends on the value of the exponent.

Take the number: X = .10111010 * 23 .

It’s adjacent values are : .10111001 * 23 and .10111011* 23 .

Each number produce a gap of .00000001* 23 .

In general the gap for floating point value X can be expressed as 2(Xe-precision)

Range:

The range of a floating point representation is bounded by it’s smallest and largest possible values.

Overflow and underflow;

Overflow occurs when an operation produces a result that can not be stored in computers’s floating point registers. Underflow occurs when an operation produces a result between zero and either the positive or negative smallest possible value.

IEEE 754 Floating point standard:

This standard specifies 2 precision for floating point numbers which are called single precision and double precision floating point representations.

Single Precision Format:

This format has 32 bits. 1 bit for sign; 8 bits for the exponent; 23 for the significand. The significand also includes an implied 1 to the left of its radix point(except for special values and denormalized numbers).

image6.emf
Error Detecting codes.docx

Error Detecting codes.docx
Error Detection codes:

Information is stored as binary codes and are transmitted by serial or parallel communication. During transmission noise is added to the signal and it may change binary bits in the code from 1 to 0, and vice versa. An error detection code is a binary code that detects digital errors during transmission. The detected errors can not be corrected but their presence is indicated.

Parity bit:

The most common error detection code used is the parity bit. A parity bit is an extra bit included with a binary message to make the total number of 1’s either odd or even. If the message consists of n bits , then the error detection code consists of n+1 bits. If the bit added to the message makes the sum of 1’s odd in the error detection code, then the scheme is called odd-parity. If the sum of bits is even , the scheme is called even parity scheme.

		Message xyz

		P(odd)

		P(even)

		Error detection code, odd parity

		Error detection code, even parity

		000

		1

		0

		0001

		0000

		 001

		0

		1

		0010

		0011

		010

		0

		1

		0100

		0101

		011

		1

		0

		0111

		0110

		100

		0

		1

		1000

		1001

		101

		1

		0

		1011

		1011

		110

		1

		0

		1101

		1101

		111

		0

		1

		1110

		1111

Parity Generator and Parity Checker:

X

Y

z

	[image: File:Xor-gate-en.svg][image: http://www.circuitstoday.com/wp-content/uploads/2011/11/EX-NOR-Gate-Symbol.jpg]odd Parity out

Parity Checker:

X

Y

z

 [image: File:Xor-gate-en.svg]

	

Parity out from generator	[image: File:Xor-gate-en.svg]

	[image: http://www.circuitstoday.com/wp-content/uploads/2011/11/EX-NOR-Gate-Symbol.jpg]Error

 Indication

The circuit arrangement checks the occurrence of error any odd number of times. An even number of errors is not detected.

We note that P(even) function is the exclusive –OR x,y,z because it is equal to 1 when either one or all 3 of the variables are equal to 1. The P(odd) function is the complement of the P(even) function.

Assume at the sending end the message bits and odd parity bit is generated. The EX-OR gates generate P(even) function and to generate P(odd), the complement of P(even) is used.

The 4 bits transmitted has an odd number of I’s. If an error occurs during transmission, then the number of 1’s become even. Hence parity checker checks for even parity.

image1.png

:D—out

image2.jpeg

image7.png
:D—out

image8.jpeg

image9.emf

image10.emf

image11.emf

image12.emf
lecture-6.docx

lecture-6.docx
Lecture:6

COMPUTER ARITHMETIC:

Addition, subtraction, multiplication are the four basic arithmetic operations. Using these operations other arithmetic functions can be formulated and scientific problems can be solved by numerical analysis methods.

Arithmetic Processor:

It is the part of a processor unit that executes arithmetic operations. The arithmetic instructions definitions specify the data type that should be present in the registers used . The arithmetic instruction may specify binary or decimal data and in each case the data may be in fixed-point or floating point form.

Fixed point numbers may represent integers or fractions. The negative numbers may be in signed-magnitude or signed- complement representation. The arithmetic processor is very simple if only a binary fixed point add instruction is included. It would be more complicated if it includes all four arithmetic operations for binary and decimal data in fixed and floating point representations.

Algorithm:

Algorithm can be defined as a finite number of well defined procedural steps to solve a problem. Usually, an algorithm will contain a number of procedural steps which are dependent on results of previous steps. A convenient method for presenting an algorithm is a flowchart which consists of rectangular and diamond –shaped boxes. The computational steps are specified in the rectangular boxes and the decision steps are indicated inside diamond-shaped boxes from which 2 or more alternate path emerge.

Addition and Subtraction:

3 ways of representing negative fixed point binary numbers:

1. Signed-magnitude representation---- used for the representation of mantissa for floating point operations by most computers.

2. Signed-1’s complement

3. Signed -2’s complement—Most computers use this form for performing arithmetic operation with integers

Addition and subtraction algorithm for signed-magnitude data

Let the magnitude of two numbers be A & B. When signed numbers are added or subtracted, there are 4 different conditions to be considered for each addition and subtraction depending on the sign of the numbers. The conditions are listed in the table below. The table shows the operation to be performed with magnitude(addition or subtraction) are indicated for different conditions.

		Sl.No

		Operation

		Add Magnitudes

		Subtract magnitudes

		

		

		

		When A> B

		When A< B

		When A=B

		1

		(+A) + (+B)

		 + (A + B)

		

		

		

		2

		(+A) + (-B)

		

		+(A-B)

		-(B-A)

		+(A-B)

		3

		(-A) + (+B)

		

		-(A-B)

		+(B-A)

		+(A-B)

		4

		(-A) + (-B)

		- (A + B)

		

		

		

		5

		(+A) - (+B)

		

		+(A-B)

		-(B-A)

		+(A-B)

		6

		(+A) - (-B)

		+ (A + B)

		

		

		

		7

		(-A) - (+B)

		- (A + B)

		

		

		

		8

		(-A) - (-B)

		

		-(A-B)

		+(B-A)

		+(A-B)

The last column is needed to prevent a negative zero. In other words, when two equal numbers are subtracted, the result should be +0 not -0.

The algorithm for addition and subtraction (from the table above):

Addition Algorithm:

When the signs of A and B are identical, add two magnitudes and attach the sign of A to the result. When the sign of A and B are different, compare the magnitudes and subtract the smaller number from the larger. Choose the sign of the result to be the same as A if A>B or the complement of sign of A if A < B. If the two magnitudes are equal, subtract B from A and make te sign of the result positive.

Subtraction algorithm:

When the signs of A and B are different, add two magnitudes and attach the sign of A to the result. When the sign of A and B are identical, compare the magnitudes and subtract the smaller number from the larger. Choose the sign of the result to be the same as A if A>B or the complement of sign of A if A < B. If the two magnitudes are equal, subtract B from A and make te sign of the result positive.

Hardware Implementation:

Let A and B are two registers that hold the numbers.

AS and BS are 2, flip-flops that hold sign of corresponding numbers. The result is stored In A and AS . and thus they form Accumulator register.

We need to perform micro operation, A+ B and hence a parallel adder.

A comparator is needed to establish if A> B, A=B, or A<B.

We need to perform micro operations A-B and B-A and hence two parallel subtractor.

An exclusive OR gate can be used to determine the sign relationship, that is, equal or not.

Thus the hardware components required are a magnitude comparator, an adder, and two subtractors.

Reduction of hardware by using different procedure:

1. We know subtraction can be done by complement and add.

2. The result of comparison can be determined from the end carry after the subtraction.

We find An adder and a complementer can do subtraction and comparison if 2’s complement is used for subtraction.

Hardware for signed-magnitude addition and subtraction:

[image:]

AVF Add overflow flip flop. It hold the overflow bit when A & B are added.

Flip flop E—Output carry is transferred to E. It can be checked to see the relative magnitudes of the two numbers.

A-B = A +(-B)= Adding a and 2’s complement of B.

The A register provides other micro operations that may be needed when the sequence of steps in the algorithm is specified.

The complementer Passes the contents of B or the complement of B to the Parallel Adder depending on the state of the mode control B. It consists of EX-OR gates and the parallel adder consists of full adder circuits. The M signal is also applied to the input carry of the adder.

When input carry M=0, the sum of full adder is A +B. When M=1, S = A + B’ +1= A – B

Hardware algorithm:

Flow Chart for Add and Subtract operations:

The EX-OR gate provides 0 as output when the signs are identical. It is 1 when the signs are different.

A + B is computed for the following and the sum is stored in EA:

1. When the signs are same and addition operation is required.

2. When the signs are different and subtract operation is required.

The carry in E after addition indicates an overflow if it is 1 and it is transferred to AVF, the addoverflow flag

A-B = A+ B’+1 computed for the following:

1. When the signs are different and addition operation is required.

2. When the signs are same and subtract operation is required.

No overflow can occur if the numbers are subtracted and hence AVF is cleared to Zero.

[the subtraction of 2 n-digit un signed numbers M-N (N≠0) in base r can be done as follows:

1. Add minuend M to thee r’s complement of the subtrahend N. This performs M-N +rn .

2. If M ≥ N, The sum will produce an end carry rn which is discarded, and what is left is the result M-N.

3. If M< N, the sum does not produce an end carry and is equal to rn –(N-M), which is the r’s complement of the sum and place a negative sign in front.]

A 1 in E indicates that A ≥ B and the number in A is the correct result.

If this number in A is zero, the sign AS must be made positive to avoid a negative zero.

A 0 in E indicates that A< B. For this case it is necessary to take the 2’s complement of the value in A.

In the algorithm shown in flow chart, it is assumed that A register has circuits for micro operations complement and increment. Hence two complement of value in A is obtained in 2, micro operations. In other paths of the flow chart , the sign of the result is the same as the sign of A, so no change in AS is required.

However When A < B, the sign of the result is the complement of original sign of A.

Hence The complement of AS stored in AS.

Final Result: AS A

Flow chart for ADD and Subtract operations:

[image:]

Addition and Subtraction with signed-2’s complement Data.:

Arithmetic Addition:

This method does not need a comparison or subtraction but only addition and complementation. The procedure is as below:

1. Represent the negative numbers in 2’s complement form.

2. Add the two numbers including the sign bits and discard any carry out of sign bit position.

3. The overflow bit V is set to 1 if there is a carry into sign bit and no carry out of sign bit or if there is a no carry into sign bit and a carry out of sign bit. Otherwise it is set to zero.

4. If the result is negative, take the 2’s complement of the result to get a correct negative result.

Arithmetic Subtraction:

1. Represent the negative numbers in 2’s complement form.

2. Take the 2’s complement of the subtrahend including the sign bit and add it to the minuend including the sign bit.

3. The overflow bit V is set to 1 if there is a carry into sign bit and no carry out of sign bit or if there is a no carry into sign bit and a carry out of sign bit. Otherwise it is set to zero.

4. Discard the carry out of the sign bit position.

Note: A subtraction operation can be changed to an addition operation if the sign of the subtrahend is changed. (
BR Register
)

 (
V
) (
AC Register
) (
Complementer&Parallel Adder
)

	Overflow

	Fig: Hardware for Signed 2/s complement for addition/ subtractioin.

				[image:]

image3.emf

image1.emf

image2.emf

image13.emf

image14.emf

image15.emf
lecture-7.docx

lecture-7.docx
LECTURE-7

Multiplication Algorithm:

Hardware implementation of multiplication of numbers in signed – magnitude form:

1. A adder is provided to add two binary numbers and the partial product is accumulated in a register.

2. Instead of shifting the multiplicand to the left, the partial product is shifted to the right, which result in leaving the partial product and the multiplicand in the required relative positions.

3. When the corresponding bit of the multiplier is zero, there is no need to add all zeros to the partial product, since it will not alter it’s value.

The hardware consists of 4 flipflops, 3 registers, one sequence counter , an adder and complementer.

[image:]

Q register& QS flip flop : contains multiplier & Its sign

Sequence counter : It is set to a value equal to the number of bits in the multiplier

 B Register& BS flipflop : It contains the multiplicand,& its sign

A Register, E Flip flop : Initialized to ‘ 0’. AS denotes sign of partial product

EA Register : hold partial product, with carry generated in addition being shifted to E .

 Qn : Rightmost bit of the multiplier; AQ : will contain the final product.

As AQ represent product register, both AS QS represent the sign of the partial product or product.

The number to be multiplied are stores in memory as n bit sign magnitude numbers and when transferred to register msb bit go to sign flipflop and remaining n-1 bits go to registers. Hence SC is initially set to n-1.

Let the lower order bit of the multiplier in Qn tested.

If it is 1, the multiplicand in B is added to the present partial product in A.

If it is a ‘0’, nothing is done. Register EAQ is then shifted once to the right to form the new partial product. The sequence counter is decremented by 1 and it’s new value checked. If it is not equal to zero, the process is repeated and a new partial product is formed. The process stops when SC = 0.

The final product is available in both A and Q, with A holding the most significant bits and Q holding the least significant bits.

Flowchart for multiply operation:

[image:]

Numerical Example for the above algorithm:

		Multiplicand B= 10111

		E

		A

		Q

		SC

		Multiplier in Q

Qn =1;add B

First Partial Product

Shift Right EAQ

		0

0

0

		00000

10111

10111

01011

		10011

11001

		101

100

		Qn =1;add B

Second Partial Product

Shift Right EAQ

		

1

0

		10111

00010

10001

		

01100

		

011

		Qn =0; Shift Right EAQ

		0

		01000

		10110

		010

		Qn =0; Shift Right EAQ

		0

		00100

		01011

		001

		Qn =1;add B

Fifth Partial Product

Shift Right EAQ

		

0

0

		10111

11011

01101

		

10101

		

000

		Final Product in AQ

AQ = 0110110101

		

		

		

		

image1.emf

image2.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.emf

image22.emf
lecture-9.docx

lecture-9.docx
LECTURE-9

Division Algorithms:

Division Process for division of fixed point binary number in signed –magnitude representation:

[image:]

Let dividend A consists of 10 bits and divisor B consists of 5 bits.

1. Compare the 5 most significant bits of the dividend with that of divisor.

2. If the 5 bit number is smaller than divisor B, then take 6 bits of the dividend and compare with the 5 bit divisor.

3. The 6 bit number is greater than divisor B. Hence place a 1 for the quotient bit in the sixth position above the dividend. Shift the divisor once to the right and subtracted from the dividend. The difference is called partial remainder.

4. Repeat the process with the partial remainder and divisor. If the partial remainder is equal or greater than or equal to the divisor, the quotient bit is equal to 1.The divisor is then shifted right and subtracted from the partial remainder. If the partial remainder is small than the divisor, then the quotient bit is zero and no subtraction is needed. The divisor is shifted once to the right in any case,.

Hardware Implementation of division for signed magnitude fixed point numbers:

To implement division using a digital computer, the process is changed slightly for convenience.

1. Instead of shifting the divisor to the right, the dividend or the partial remainder, is shifted to the left so as to leave the two numbers in the required relative position.

2. Subtraction may be achieved by adding A (dividend)to the 2’s complement of B(divisor). The information about the relative magnitude is then available from end carry.

3. Register EAQ is now shifted to the left with 0 inserted into Qn and the previous value of E is lost..

4. The divisor is stored in B register and the double length dividend is stored in registers A and Q.

5. The dividend is shifted to the left and the divisor is subtracted by adding it’s 2’s complement value.

6. If E= 1, it signifies that A ≥ B. A quotient bit is inserted into Qn and the partial remainder is shifted to the left to repeat the process.

7. If E = 0, it signifies that A < B so the quotient Qn remains 0(inserted during the shift). The value of B is then added to restore the partial remainder in A to its previous value. The partial remainder is shifted to the left and the process is repeated again until all 5 quotient bits are formed.

8. At the end Q contains the quotient and A the remainder. If the sign of dividend and divisor are alike, the quotient is positive and if unalike, it is negative. The sign of the remainder is the same as dividend.

 (
Sequence
Counter(
 SC)
) (
B Register
)

 (
Q
S
) (
Complementer
 and parallel adder
) (
E
) (
Q Register
) (
A Register
)

 (
A
S
)

 Qn

	 0

 Hardware for implementing division of fixed point signed- Magnitude Numbers

Example of Binary division with digital hardware: Divisor B = 10001, B + 1 = 01111

		

		

		E

		A

		Q

		SC

		

		Dividend:

		

		01110

		00000

		5

		

		Shl EAQ

		

		11100

		00000

		

		

		Add , B + 1

		

		01111

		

		

		

		E = 1

		1

		01011

		

		

		

		Set Qn = 1

		1

		01011

		00001

		4

		

		Shl EAQ

		0

		10110

		00010

		

		

		Add , B + 1

		

		01111

		

		

		

		E = 1

		1

		00101

		

		

		

		Set Qn = 1

		1

		00101

		00011

		3

		

		Shl EAQ

		0

		01010

		00110

		

		

		Add , B + 1

		

		01111

		

		

		

		E= 0; Leave Qn = 0

		0

		11001

		00110

		

		

		Add B

		

		10001

		

		

		

		Restore remainder

		1

		01010

		

		2

		

		Shl EAQ

		0

		10100

		01100

		

		

		Add , B + 1

		

		01111

		

		

		

		E = 1

		1

		00011

		

		

		

		Set Qn = 1

		1

		00011

		01101

		1

		

		Shl EAQ

		0

		00110

		11010

		

		

		Add , B + 1

		

		01111

		

		

		

		E= 0; Leave Qn = 0

		0

		10101

		11010

		

		

		Add B

		

		10001

		

		

		

		Restore remainder

		1

		00110

		11010

		0

		

		Neglect E

		

		

		

		

		

		Remainder in A

		

		00110

		11010

		

		

		Quotient in Q

		

		

		

		

Divide overflow:

When the dividend is twice as long as the divisor, the condition for overflow can be stated as follows:

A divide-overflow condition occurs if the higher order half bits of the dividend constitute a number greater than or equal to the divisor. If the divisor is zero, then the dividend will definitely be greater than or equal to divisor. Hence divide overflow condition occurs and hence the divide-overflow –flip flop will be set. Let the flip flop be called DVF.

Handling DVF:

1. Check if DVF is set after each divide instruction. If DVF is set, then the program branches to a subroutine that takes corrective measures such as rescaling the data to avoid overflow.

2. An interrupt is generated if DVF is set. The interrupt causes the processor to suspend the current program and branch to interrupt service routine to take corrective measure. The most common corrective measure is to remove the program and type an error message that explains the reasons.

3. The divide overflow can be handled very simply if the numbers are represented in floating point representation.

Flow chart for divide operation: 	

[image:]

Assumption:

Operands are transferred from memory to registers as n bit words.n-1 bit form magnitude and 1 bit shows the sign.

A divide overflow condition is tested by subtracting the divisor in B from half of the bits of dividend stored in A. If vA ≥ B, the DVF is set and the operation is terminated prematurely. If A < B, no DVF occurs and so the value of dividend is restored by adding B to A.

The division of the magnitudes starts by shifting the dividend in AQ to the left, with the higher order bit shifted into E. If the bit shifted into E is 1, we know that EA is greater than B because EA consists of a 1 followed by n-1 bits while B consists of only n-1 bits. In this case, B must be subtracted from EA and 1 inserted into Qn for the quotient bit. Since register A is missing the higher order bit of the dividend (which is in E), it’s value is EA – 2n-1 . Adding to this value the 2’s complement of B results in

(EA-2n-1) + (2n-1 –B)= E-B. The carry from the addition is not transferred to E if we want E to remain a 1.

If the shift left operation inserts a zero into E, the divisor is subtracted by adding it’s 2’s complement value and the carry is transferred into E. If E = 1, it signifies that A ≥ B and hence Qn is set to 1. If E = 0, it signifies that A < B and the original number is restored by adding B to A. In the latter case we leave a 0 in Qn .(0 was inserted during the shift).

This process is repeated again with register A holding the partial remainder. After n-1 times, the quotient magnitude is formed in the register Q and the remainder is found in register A.

image1.emf

image2.emf

image23.png
(Gsustracr)

¥

Change
signof Y

RETURN Decrement
exponent

ure 10.22 Floating-Point Addition and Subtraction (Z— X = Y)

image24.png
Add
Exponents

1

Subtract Bias

RETURN

Report

Overflow

Report
Underflow

‘Multiply
Significands

Figure 10.23 Floating-Point Multi n (Z— XX Y)

image25.png
Subtract
Exponents

Z—0 Z—c

Add Bias

~—/

Report

Overflow

Report
Underflow

Figure 10.24 Floa

g-Point Division (Z+— X/Y)

image26.emf
lecture-11.docx

lecture-11.docx
[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

image7.emf

image1.emf

image2.emf

image3.emf

image4.emf

image5.emf

image6.emf

image27.emf
lecture-12.docx

lecture-12.docx
Lecture-12

[image:]

[image:]

[image:]

image1.emf

image2.emf

image3.emf

image28.emf
lecture-13.docx

lecture-13.docx
Lecture-13

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

image1.emf

image2.emf

image3.emf

image4.emf

image5.emf

image6.emf

image29.emf
4.1.5.a.docx

4.1.5.a.docx
1. The decimal representation for hex number F3 is .

2. The binary equivalent for the decimal number 41.6875 is

3. The BCD code for the decimal number 248 is .

4. For a given number N in base r having n digits, the (r-1)’s complement of N is defined as .

5. The 10’s complement of a decimal number is obtained by adding to the 9’s complement value.

6. When 2 unsigned numbers are added, an overflow is detected from the of the most significant position.

7. An overflow for addition/ subtraction of two signed numbers is detected when the carry into the sign bit position and carry out of the sign bit position are .

8. Booth multiplication algorithm is followed when the binary integers are represented in

9. When Booth algorithm is used for multiplication, the partial product does not change when the multiplier . is identical to the previous multiplier .

10. Floating point multiplication and division do not require an alignment of the .

Answers: (1). 243 (2) 101001.1011 (3) 0010 0100 1000

 (4) (rn -1)-N (5) 1 (6) carry out (7) not equal

 (8) signed 2’s complement representation for negative integers. (9) bit, bit

 (10) mantissa

image30.emf
4.1.5.b.docx

4.1.5.b.docx
Unit-I

1. Floating point representation is used to store

(A) Boolean values (B) whole numbers (C) real integers (D) integers

Ans: C

2. In computers, subtraction is generally carried out by

(A) 9’s complement (B) 10’s complement (C) 1’s complement (D) 2’s complement

Ans: D

3. The circuit used to store one bit of data is known as

(A) Register (B) Encoder (C) Decoder (D) Flip Flop

Ans: D

4. Which of the following is not a weighted code?

(A) Decimal Number system (B) Excess 3-cod

(C) Binary number System (D) None of these

Ans: B

5. Assembly language

(A) uses alphabetic codes in place of binary numbers used in machine language

(B) is the easiest language to write programs

(C) need not be translated into machine language

(D) None of these

Ans: A

6. The multiplicand register & multiplier register of a hardware circuit implementing booth's algorithm have (11101) & (1100). The result shall be

(A) (812) 10 (B) (-12) 10 (C) (12) 10 (D) (-812) 10

Ans: A

7. What characteristic of RAM memory makes it not suitable for permanent storage?

(A) too slow (B) unreliable (C) it is volatile (D) too bulky

Ans: C

8. (2FAOC) 16 is equivalent to

(A) (195 084) 10 (B) (001011111010 0000 1100) 2 (C) Both (A) and (B) (D) None of these

Ans: B

9. The average time required to reach a storage location in memory and obtain its contents is called the

(A) seek time (B) turnaround time (C) access time (D) transfer time

Ans: C

10. In signed-magnitude binary division, if the dividend is (11100) 2 and divisor is (10011) 2 then the result is

(A) (00100) 2 (B) (10100) 2 (C) (11001) 2 (D) (01100) 2

Ans: B

image31.emf
true or false.docx

image1.emf
lecture-1.docx

true or false.docx
Fill the blank with true or false.

1. EEPROM comes under volatile memory category.

2. Thumb drive or pen drive is semiconductor memory.

3. The control unit generates the appropriate signal at the right moment.

4. While executing a program, CPU brings instruction and data from disk memory.

5. A memory module of capacity 16 * 4 , indicates a storage of 128 bits.

6. A memory module of capacity of 1024 locations, the required address bus size is 10.

7. The program counter PC is used to store the address of the next instruction to be fetched from Accumulator. .

8. For n-bit signed integer, the range of numbers that can be represented is – 2n-1 to 2n+1 .

9. Given a number N in base r having n digits, the (r-1)’s complement of N is defined as

 (rn -1) – r.

10. Floating point representation uses mantissa and an exponent part of radix R .

Answers: (1). false (2) true (3) true (4) false (5) false

 (6) true (7) false (8) false (9)false (10) true

image32.emf
4.1.6.a.docx

4.1.6.a.docx
1. List out the structural components of the IAS(Institute for advanced studies)computer.

2. What do you mean by volatile memory?

3. Tell the functioning of a computer in two sentences.

4. Write down the different states involved in the execution of an instruction.

5. Tell the reasons for interrupts in a computer system.

6. What do you mean by system bus and system bus structure?

7. What is the need for multiple bus hierarchies?

8. What do you mean by cache memory?

9. What do you mean by DRAM memory?

10. What do you mean by normalization in floating point representation?

11. Give an electronic device for odd function output.

image33.emf
4.1.6.b.docx

4.1.6.b.docx
1`. Convert hexadecimal numbers to binary and octal numbers. FACDF, EEFFC,

 CF979, 79797.

2. show the bit configuration of a 24 bit register when it content represent the decimal equivalent of 215 in (a) binary; (b) binary coded octal;(c) binary coded hexadecimal; (d) binary coded decimal.

3. obtain the 9’s complement of the following 8-digit decimal numbers12349876; 00980100, 90009951; and 00000000.

4. Perform the arithmetic operations(+42) + (-13) and (-42)- (-13) in binary using signed 2’s complement representation for negative numbers.

5. Represent the number (+46.5)10 as a floating point binary number with 24 bits. The normalized fraction mantissa has 16 bits and the exponent has 8 bits.

6. Represent decimal number 8620 in (a) BCD; (b) excess-3 code; (c)2421 code;(d)as a binary number.

7. Derive the circuits for a 3-bit parity generator and a 4 bit parity checker using an even parity bit.

8. Formulate a hardware procedure for detecting an overflow by comparing the sign of the sum with the signs of augend and addend. The numbers are in signed 2’s complement representation.

9. Show that adding B after the operation A + B + 1 restores the original value of A. What should be done with the end carry.

10. Design array multiplierthat multiply 2, 4-bit numbers. Use AND gates and binary adders.

image34.emf
4.1.6. d.docx

4.1.6. d.docx
1. Prove the algorithm for adding two binary numbers in signed 2’s complement representation.

2. Proove that the multiplication of two n-digit numbers in base r gives a product no more than 2n digits in length. Show that this statement implies that no overflow can occur in the multiplication operation.

3. Show the contents of registers E, A, Q, and SC during the process of multiplication of two binary numbers, 11111(multiplicand)and 10101(multiplier). The signs are not included.

4. Derive an algorithm in flowchart form for the non restoring method of fixed point binary division.

5. Derive an algorithm for evaluating the square root of binary fixed point number.

6. A binary floating point number has 7 bits for a biased exponent. The constant used for the bias is 64. (A). List the biased representation of all exponents from -64 to +63.

(B). Show that a 7 bit magnitude comparator can be used to compare the relative magnitude of the two exponents. (C). Show that after the addition of two biased exponents, it is necessary to subtract 64 in order to have a biased exponent sum. How would you subtract 64 by adding it’s two complements value?

7. show that the exclusive OR function x = A (xor)B(xor)C(xor)D is an odd function. Obtain the truth table for y = A(xor) B and for z = C(xor)D and then formulate the truth table for x = y (xor)z. show that x = 1 only when the total number of 1’s in A, B, C, and D is odd.

image35.emf
4.1.6.e.docx

4.1.6.e.docx
1. Collect the IC numbers for Gates, multiplexers, ALUs and CPUs from web.

2. Draw the pin diagram and control signals of the above ICS along with packaging and pin out diagrams.

image36.emf
4.1.6.c.docx

lecture-1.docx
Lecture-1

[image:]

[image:]

[image:]

[image:]

[image:]

image6.emf

image1.png

This book deals with computer architecture as well as computer organization
and design. Computer architecture is concerned with the structure and behav-
ior of the various functional modules of the computer and how they interact
to provide the processing needs of the user. Computer organization is con-
cerned with the way the hardware components are connected together to form
a computer system. Computer design is concerned with the development of
the hardware for the computer taking into consideration a given set of specifica-
tions.

image2.emf

image3.emf

image4.emf

image5.emf

4.1.6.c.docx
Essay Type Questions:

UNIT-I

1. What are the basic operational concepts of a computer? Explain with a diagram.

2. Discuss in detail about floating point representation and also explain floating point

 arithmetic operations

3. Explain Booth’s multiplication algorithm with the help of flow chart.

4. With an example explain how BCD addition is performed

5. What is meant by interconnection structure? Discuss various types of interconnection

 structures.

6. Explain the registers used for floating point arithmetic operation

7. Explain the functions of the basic components of the Computer system.

8. Draw circuit for one stage adder &logic unit and explain each block

9. Show that there can be no mantissa overflow after a multiplication operation.

10. Derive an algorithm in flow chart form for the comparison of two signed binary

 Numbers when negative numbers are in signed 2’s complement representation

 (i)By means of a subtraction operation with the signed 2’s complements numbers.

 (ii) By scanning and comparing pairs of bits from left to right.

image37.emf
JNTUK questions unit-1.docx

JNTUK questions unit-1.docx
JNTUK questions New

		1. (a) Discuss various functional units of a computer.

		 (b) Explain the following with examples for each.

		 (i) Fixed point representation.

		

		 (ii) Integer representation

		

		 (iii) Floating point representation

		

2(a) What is a bus? Draw the figure to show how functional units are interconnected using a bus and explain.

(b) Describe fixed point representation with examples.

		3 (a) Draw the basic structure of a computer and explain.

		

		 (b) Explain about sign magnitude and 2’s complement approaches for representing

 The Fixed point numbers. Why 2’s complement is preferable

		.

		

		4(a) What are the different types of information handled by a computer? Explain.

		 (b) Represent the number (+46.5)10 as a floating point binary number with 24 bits. The

		normalized fraction mantissa has 16 bits and the exponent has 8 bits.

		5a)

		Briefly explain about the integer arithmetic with suitable examples.

		

		b) Draw and explain the block diagram of a complete processor.

6a) Draw the diagram of the single Bus Organization of the data path inside a processor

 b) Describe the connections between the processor and memory with a Neat structural diagram.

JNTUK questions old

1(a). In order to find the mileage given buy a bike we observe how many liters of oil is filled and how many kilometers it drove. The observation is carried for a day, a month and an year. Which of them represent the actual performance of the bike?. Similarly we, wanted to evaluate the performance of a computer. How are you going to do? What are the performance measures used in general?

(b) Represent 32.75 and 18.125 in single precision IEEE 754 representation.

2(a) Explain with an example IEEE 754 single precision floating point representation.

(b) Explain about time shared bus arbitration and it’s disadvantages

3. Distinguish between error detection and correction codes. What do you understand between by odd parity and even parity? What is odd function and even function? To calculate odd parity and even parity values which functions can be used? Calculate odd and even parity values for all hexadecimal digits 0-9 and A-F.

4(a) Explain about sign magnitude and two’s complements approaches for representing the fixed point numbers. Why 2’s complement is preferable?

(b) Give means to identify whether or not an overflow has occurred in 2’s complement addition and subtraction operations. Take one example for each possible situation and explain. Assume 4 bit registers.

(c) . Distinguish between tightly coupled microprocessors and tightly coupled microprocessors

5(a) Explain the terms computer architecture, computer organization and computer design in an detailed fashion.

(b) Explain about MIPS ,FLOPS rating of a processor. How do we arrive at these values?

6(a) Draw a flow chart to explain how addition and subtraction of two fixed point numbers can be done. Also draw a circuit using full address for the same.

(b) Explain Booth’s logarithm with it’s theoretical basis.

7 (a) What is the use of fast multiplication circuits? Write about array multipliers.

 (b) Explain Booth’s logarithm with it’s theoretical basis

8(a) How many bits are required to store the result addition, subtraction, multiplication and division of two n-bit signed numbers. Prove.

(b) What is overflow and underflow. What is the reason? If the computer is considered as infinite system do we still have these problems?

9 Explain the computational errors. Why do they occur? Give some problems where these errors are catastrophic. Also give some practical examples(algorithms)where error gets (a) accumulated and (b) multiplies

10(a) Multiply 10111 and 10011 using booth’s algorithm.

(b) Represent two n-bit unsigned numbers multiplications with a series of n/2 bit multiplications.

image38.emf
4.1.10.docx

4.1.10.docx
Unit-1 Interview questions?

1. List any five secondary storage decives/memory.

2. What is compiler? What is assembler? What is interpreter?

3. What is hardware ? What is software?

4. What is system software? What is application software?

5. What is Bus?

6. Give the name of any 3 system software.

7. Give the name of any 3 application software.

8. How many universal gates? List out them

9. What is half adder? What is full adder?

10. What’s the meaning of multiplexer?

11. What is Decoder? What is Encoder?

12. What register. ?What is shift register?

13. what is primary memory?

14. what is secondary memory?

15. Explain pen drive & Explain zip drive.

16. . Explain ASCII, BCD,EBCDIC

17. What is microprocessor?

18. What is bit, byte, word?

19. What do you mean by SRAM and DRAM?

20. How do you determine whether a processor is 8 or 16 bit processor?

image39.emf
neptel vidieo ref.docx

neptel vidieo ref.docx
http://nptel.ac.in/video.php?subjectId=106102062

For the following Topics

		Lectures in this course:38

		1 - Introduction to Computer Architecture (53:20)

		2 - History of Computers (35:14)

		3 - Instruction Set Architecture - I (52:17)

		4 - Instruction Set Architecture - II (51:42)

		5 - Instruction Set Architecture - III (52:43)

		6 - Recursive Programs (47:02)

		7 - Architecture Space (48:40)

		8 - Architecture Examples (50:48)

		9 - Performance (50:29)

		10 - Performance (52:58)

		11 - Binary Arithmetic, ALU Design (50:30)

		12 - ALU Design, Overflow (49:48)

		13 - Multiplier Design (51:36)

		14 - Divider Design (54:37)

		15 - Fast Addition , Multiplication (1:01:21)

		16 - Floating Point Arithmetic (51:39)

		17 - Processor Design - Introduction (40:03)

		18 - Processor Design (45:49)

		19 - Processor Design - Simple Design (50:03)

		20 - Processor Design - Multi Cycle Approach (40:56)

		21 - Processor Design - Control for Multi Cycle (56:43)

		22 - Processor Design Micro programmed Control (33:11)

		23 - Processor Design Exception Handling (56:01)

		24 - Pipelined Processor Design Basic Idea (54:15)

		25 - Pipelined Processor Design: Data path (48:37)

		26 - Pipelined Processor Design: Handling Data (37:27)

		27 - Pipelined Processor Design (55:41)

		28 - Memory Hierarchy : Basic Idea (48:10)

		29 - Memory Hierarchy : Cache Organization (53:34)

		30 - Memory Hierarchy : Cache Organization (49:08)

		31 - Memory Hierarchy : Virtual Memory (45:41)

		32 - Memory Hierarchy : Virtual Memory (50:11)

		33 - Input / Output Subsystem: Introduction (49:53)

		34 - Input / Output Subsystem: Interfaces and buses (54:21)

		35 - Input / Output Subsystem: Interfaces and buses (55:03)

		36 - Input / Output Subsystem: I/O Operations (50:18)

		37 - Input / Output Subsystem: Designing I/O Systems (51:30)

		38 - Concluding Remarks (45:10)

		

image40.emf
unit-2.Lecture-1.ppt x

unit-2.Lecture-1.pptx
Register transfer language

Unit-2

RTL & Micro operation

Digital system is an interconnection of digital hardware modules that accomplish a specific information processing task

Digital system vary in size and complexity. Use modular design approach invariably

Modules contain registers, decoders, arithmetic elements and control logic.

Module interconnection by common control and data path

The best definition of digital modules are given by the registers they contain and the operations done on the content of registers.

The operations executed on data stored in registers are called microoperations

Examples of microoperations are shift,count, clear,and load. Registers are capable of implementing microoperations

Ex. Counter with parallel load facility can do increment and load microoperations. A bidirectional shift register is capable of shift right and shift left microoperations

Internal hardware organaisation of digital computer

It is defined by the following specification

1. The set of registers it contain and their function

2. The sequence of microoperations performed on the binary information stored in the registers

3. The control that initiates the sequence of microoperations

Specification of sequence of microoperations in words leads to lengthy descriptive explanation.

The symbolic notation used to describe the microoperation transfers among registers is called register transfer lanquage (RTL)

Register transfer Implies the availability of hardware logic circuits that can perform a stated microoperation and transfer the result to the same or another register.

RTL is a system for expressing in symbolic form the microoperation sequences among registers of a digital module. A convenient tool for describing the internal organisation of digital computers in concise and precise manner. It can also be used to facilitate the design process of digital system.

Symols are defined for various types of microoperations and hardware to implement the stated microoperations are described

Thus RTL will be used to specify register transfers, the microoperations and control functions that describe the internal hardware organisation of digital computers.

Representation of a Register

Register Transfer& Control function

Register transfer

REGISTERS:

Computer registers are designated by capital letters, followed by numerals sometimes.

Individual flip-flips in an n bit register are numbered in sequence from 0 through n-1, starting from 0 in the right most position and increasing the numbers toward the left.

Register is rep. as rectangular box, with name of the register inside. Bits are numbered from right to left. 16 bit registers consist of low order byte and high order byte

Information transfer is designated by replacement operator. R2 R1

The control condition for register transfer is terminated with a colon.

P: R2 R1

Every statement written in a register transfer notation implies a hardware construction for implementing the transfer.

Example control circuit and timing diagram

Clock is not included as a variable in register transfer in the register transfer statements. It is assumed that all transfers occurs during a clock edge transition

Basic symbols for register transfers

Letters(and numerals),parenthesis(),Arrow and comma.

Basic Symbols for register transfers

Bus and Memory Transfers

Bus system

The no; of wires will be excessive if separate lines are used between each register and all other registers in the system. Common bus system is a more efficient scheme. A bus structure consists of a set of common lines, one for each bit of a register,through which binary information is transferred one at a time. Control signals determine which register is selected by the bus during each particular register transfer.

Common bus system using multiplexers.

Bits in the same significant position in each register is are connected to the data inputs of one multiplexer to form one line of the bus.

Ex. MUX0 multiplexes the 4 ‘0’ bits of the registers.

Common bus system for four registers

Bus selection

N-line common bus

In general a bus system will multiplex k registers of n bits each to produce an line common bus.

The number of multiplexers required to construct the bus is equal to the number of bits (n) in each register.

The multiplexer size is given by k*1 where k specifies inputs to multiplexer. The k value is equal to the number of registers that use the common bus.

Example: a common bus for 8, 16 bit registers;

	Uses 16 multiplexers, 8 inputs for each multiplexers, 3 selection lines.

	BUS C R1 BUS

	R1 C

Transfer of information from bus to one of many destination registers:

Connect the bus lines to the input of all destination registers and activate the load control input of the particular destination register selected for transfer. When the bus is included in the register transfer statement, the register transfer is symbolized as above.

	

Three-state bus buffers

3-state gate

Buffer gate

Because of the high –impedance state of a three state gate, a large no: of 3-state gate outputs can be connected with wires to form a common bus lines without endangering loading effects. The connected buffers must be controlled so that only one three state buffer has access to the the bus line while all other buffers are maintained in a high impedance state.

Memory transfer

Read operation

Write operation

Bus system with 3-state buffers

Memory transfer

image1.png

Figure 4-1 Block diagram of register.

L_ RI1 _] ‘76543210_]

(a) Register R (b) Showing individual bits

15 0 15 8 7 0
= R2 | [re@ | rew

(c) Numbering of bits (d) Divided into two parts

image2.png

Figure 4-2 Transfer from R1 to R2 when P = 1.

Load
R2 < Clock

(a) Block diagram

t t+1

SVl B e W I o OO O

PR S5 S SREE T
Transfer occurs here

(b) Timing diagram

image3.png

TABLE 4-1 Basic Symbols for Register Transfers

Symbol Description Examples
Letters Denotes a register MAR, R2
(and numerals)
Parentheses () Denotes a part of a register R2(0-7), R2(L)
Arrow « Denotes transfer of information R2 « R1

Comma , Separates two microoperations R2 « R1, R1 « R2

image4.png

Figure 4-3 Bus system for four registers.

4- line
common
S bus
So
4x1 4><1 4x1 4x1
MUX 3 MUX 1 MUX 0
312 =10 Sty 0] a2 e 0
D, C; B, A; D, C B, A Do Cy By Ag
Dy Dy Dy G C G B, Bi By Ay Ar Ay

3 S 2 10 BpasD sl () 3= 2 %m0 Be 25 140

Register D Register C Register B Register A

image5.png

TABLE 4-2 Function Table for Bus of Fig. 4-3

51 So Register selected

A

- o
=

B
(¢
D

image6.png

Bus line for bit 0

St

2x4 L
decoder 2

Select {

Enable E

3

Figure 4-5 Bus line with three state-buffers.

image7.png

Read: DR < MI[AR]

image8.png

R3 « R1+RZ+1

image9.png

memory read

image10.png

memory write

unit-2

Register transfer language

image41.emf
unit-2.Lecture-2.ppt x

image2.emf
lecture-2.pptx

unit-2.Lecture-2.pptx
Arithmetic micro operations

4-categories of micro operation in digital computers

1. register transfer micro operations, transfer binary information from one register to another.

2. arithmetic micro operations, perform arithmetic operations on numeric data stored in registers

3. Logic micro operatios, perform bit manipulation operations on nonnumeric data stored in registers

4. Shift micro operations, perform shift operations on data stored in registers

Basic arithmetic micro operations are addition, subtraction, increment, decrement, and shift.

Subtraction is most often implemented by complementation and addition

In most computers, the multiplication operation is implemented with a sequence of add and shift micro operations. Division is implemented with a sequence of subtract and shift micro operations.

Table- Arithmetic Micro operations

Binary adder

Full adder---sums two bits and a previous carry

Binary adder constructed with full adder circuits in cascade.Augend & addend bits

Adder subtractor is made with full adder and xor gates

Binary incrementor can be made by binary counter or by using half adder circuits

Arithmetic circuit for basic arithmetic operations

4-bit Binary Adder

4-Bit adder-Subtractor

4-bit binary incrementer

4-bit arithmetic circuit

Arithmetic circuit function table

Logic microoperations

Logic microoperations are seldom used in scientific computations, but they are very useful for bit manipulation of binary data and for making logical decisions

Special symbols

When the symbol + occurs in a microoperation,it will denote an arithmetic plus. When it occurs in a control function(or boolean function), it will denote an OR operation.

The symbol ˅ will be used to denote OR microoperation and the symbol ˄ will be used to denote AND microoperation.

Ex. P+Q: R1←R2 + R3, R4←R5VR6

List of Logic microoperations

16 logic microoperations with 2 binary variables

Most computers use only four gates for AND< OR< XOR and Complement and derive the rest of the 16 logic operations from these 4 gates only.

For logic circuits with n-bits, there will be n stages of logic circuit with each stage capable of generating the four basic logic microoperations with selection inputs

16 functions of two variables

List of logic micro operations

Hardware implementation

Applications of logic Microoperations

Logic microoperationss can be used to manipulate individual bits or a portion of a word stored in a register.

They can be used to change bit values, delete a group of bits, or inserts new bit values into a register

A register is manipulated by operand register B by logic microoperations.

The OR microoperation is used to selectively set bits.The operand register must have 1’s in places where we want to set to 1 in register A

The XOR microoperation complements bits in A register,where there are corresponding 1’s in B register

The selective Clear operation clear to 0’s the bits in A only where there are corresponding 1’s in B. The logic microoperation is A˄B’

In mask operation ,AND microoperation is used to selectively clear bits of A registerwhere there are corresponding 0’s in. B register.

To insert a group of bits, the bits are first masked and then Ore by using ND microoperation for masking and OR microoperation for insert operation.

XOR micro operation is used to test whether two register values are equal or not

image1.png

TABLE 4-3 Arithmetic Microoperations

Symbolic

designation Description
R3 « R1+ R2 Contents of R1 plus R2 transferred to R3
R3 < R1-R2 Contents of R1 minus R2 transferred to R3
R2 « R2 Complement the contents of R2 (1’s complement)
R2 <« R2Z +1 2's complement the contents of R2 (negate)
R3 « R1+R2Z+1 RI1 plus the 2's complement of R2 (subtraction)
R1'«< R1+1 Increment the contents of R1 by one

RIFeRT=1 Decrement the contents of R1 by one

image2.png

Cy

S3

S Sy

Figure 4-6 4-bit binary adder.

So

image3.png

Cs

S3

Sz

Figure 4-7

Sy

4-bit adder-subtractor.

So

image4.png

Figure 4-8 4-bit binary incrementer.

image5.png

Figure 4-9 4-bit arithmetic circuit.

image6.png

TABLE 4-4 Arithmetic Circuit Function Table

Select
Input Output

S1 So Cin Y D=A+Y + Cy Microoperation
0 0 0 B D=A+B Add
0 0 1 B D=A+B+1 Add with carry
0 1 0 B D=A+B Subtract with borrow
0 1 1 B D=A+B +1 Subtract
1 0 0 0 D=A Transfer A
1 0 il 0 D=A+1 Increment A
ik 1 0 1 D=A-1 Decrement A
1 1l 1 1 D=A Transfer A

image7.png

F, F; F, Fs Fs F;, Fs Fs Fo Fu Fp, Fs Fu Fis

B

x y|F

image8.png

TABLE 4-6 Sixteen Logic Microoperations

Boolean function Microoperation Name
F,=0 F<0 Clear
F, =xy F<ANB AND
E, = xy’ F<ANB
F=x F<A Transfer A
F.=x'y F<A N\B
Fs=y F<B Transfer B

s =x®Dy F<A®B Exclusive-OR

F=x+y F<A\/B OR
Fs=(x +y) F<AVB NOR
F, = (x®y)’ F<A®B Exclusive-NOR
Fo=y' F<B Complement B
Fy=x+y' F<AVE
Fuo=x' F<4 Complement A
Fs=x"+y F<A\/B
Fi = (xy) F<ANB NAND
Fs=1 F<all I’s Set to all 1’s

image9.png

Figure 4-10 One stage of logic circuit.

3

— E;

D e —

(a) Logic diaoram

Operation

AND

0 | OR
il 0 XOR
Complement

(b) Function table

Arithmetic micro operations

image42.emf
unit-2.Lecture-3.ppt x

unit-2.Lecture-3.pptx
Shift Microoperation

Used for serial transfer of data. Also used in arithmetic, logic and other data processing operations.

During a shift- left operation , the serial input transfers the bit into the rightmost position. During shift - right operation, the serial input transfers a bit into the left-most position

A logical shift is one that transfers 0 through the serial input.

The circular shift circulates the bits of the register around the two ends without loss of information.Here serial output of shift register is connected to the shift input of the register

An Arithmetic shift is a microoperation, that shifts a signed binary number to the left or right. An arithmetic shft-left multiplies a signed binary number by two. An arithmetic shift – right divides the number by two. Arithmetic shift must leave the sign bit unchanged because the sign of the number remains the same when it is multiplied or divided by 2. The arithmetic shift right leaves the sign bit unchanged and shift the number including the sign bit to the right.Arithmetic shift-left is similar to logical shift left

Table -Shift Micro operations

4-bit combinational circuit shifter

Arithmetic logic shift unit

Function table – Arithmetic logic shift unit

image1.png

TABLE 4-7 Shift Microoperations

Symbolic designation

Description

R<shlR
R<shrR
R<dlR
R«cirR
R<ashlR
R <ashr R

Shift-left register R
Shift-right register R
Circular shift-left register R
Circular shift-right register R
Arithmetic shift-left R
Arithmetic shift-right R

image2.png

Select
0 for shift right (down)

pen 1 for shift left (up)

input (Ig)

Function table

Select

Output

Hy Hi Hy H;

Serial
input (I7)

Figure 4-12 4-bit combinational circuit shifter.

Ik A A A

A A AL

— e

image3.png

Figure 4-13 One stage of arithmetic logic shift unit.

S3
Sz
S

So

Ci+1

Aiy

Aivy

E,

shr

shl

image4.png

TABLE 4-8 Function Table for Arithmetic Logic Shift Unit

Operation select

S Sz S; So Cin Operation Function

0 0 0 0 0 F=A Transfer A

0 0 0 0 1 F=A+1 Increment A

0 0 0 1 0 F=A+B Addition

0 0 0 1 il F=A+B+1 Add with carry

0 0 1 0 0 F=A+B Subtract with borrow
0 0 1 0 i F=A+B +1 Subtraction

0 0 1 it 0 E=A-1 Decrement A

0 0 1 il 1 F=A Transfer A

0 i 0 0 X F=ANB AND

0 1 0 4 X F=A\B OR

0 ik 1 0 X F=A®B XOR

0 1 i it XA e A Complement A

1 0 X X X F=shrA Shift right A into F
11 LB R o P o] A Shift left A into F

Shift Microoperation

image43.emf
unit-2.Lecture-4.ppt x

unit-2.Lecture-4.pptx
Instruction codes

Instruction code is a group of bits.It is divided into operation part and operand part.

The group of bits in the operation part defines operations such as add,subtract, multiply, shift and complement.

The total number of operations available in the computer determine the no of bits in the operation part of instruction code.

What is the relationship between computer operation and microoperation?

The control unit receives the instruction from memory and interprets the operation code bits. It then issues a sequence of control signals to initiate microoperations in internal computer registers. For every operation code, the controlissues a sequence of microoperations needed for the hardware implementation of the specified operation. Thus an operation code is considered as macrooperation because it specifies a set of microoperations.

Operands are stored in processor registers or in memory words. Memory words are specified by their address and register by a group of bits (k bits) assigned to the instruction to specify one of 2’k registers.

The binary code of instruction can be arranged in many ways and each computer has its own particular instruction code format.Instruction code format are conceived by computer designers who specify the architecture of the computer.

Stored program organization

One processsor register

An instruction code format with two parts; operation code part and operand address part.

Control obtains the memory operand address from operand address part of instruction code and read the operand from memory which is operated with the data stored in processor register

Computers that have single processor register usually assign the name accumulator to it and lable it AC.

Operations such as clear AC, complement AC and increment AC operate on data soted in AC register and they do not need operand address. In such case, the operand address part of instruction code can be used to specify other operations for the computer.

Immediate operand

Direct address

Indirect address; one bit of the instruction code can be specified to distinguish between direct and indirect address.

Indirect address instruction needs two references to memory to fetch an operand

Effective address is defined as the address of the operand in the computation type instruction or the target address in the branch type instruction

Pointer

Fig-stored program organization

Demonstration of direct and indirect address

Computer registers & Common Bus System

Instruction sequencing in stored program computer needs a counter to calculate the address of the next instruction after execution of the current instruction is completed Program counter (PC) is provided for this in the processor.

A register is needed in the control unit of the processor for storing the instruction code after it is read from memory. The register provided for this purpose is called instruction register(IR).

The computer needs processor registers for manipulating data and a register for holding memory address.temporary register (TR) ,data register (DR) and memory address register (AR) are provided for this purpose.

INPR input registeris used to receive an 8-bit character from input device. OUTR , the output register is used to hold an 8-bit character for an output device.

Common Bus System: The no. of wires will be excessive if connections are made between the outputs of each register and the inputs of other registers.

A more efficient scheme for transfering information in a system with many registers is to use a comon Bus.

16-bit ommon bus syste m

List of registers for the basic computer

Basic computer register connected to common bus

image1.png

Figure 5-1 Stored program organization.

15 12 /11 0
Opcode Address
Instruction format

15 0

Binary operand

Memory
4096 x 16

i S

Instructions
(program)

—

Operands
(data)

Processor register
(accumulator or AC)

image2.png

15 14 12,11 0
I Opcode Address l

(a) Instruction format

Memory

22(0 457

457 Operand

AC

(b) Direct address (c) Indirect address

Figure 5-2 Demonstration of direct and indirect address.

image3.png

TABLE 5-1 List of Registers for the Basic Computer

Register Number

symbol of bits Register name Function

DR 16 Data register Holds memory operand
AR 12 Address register Holds address for memory
AC 16 Accumulator Processor register

IR 16 Instruction register ~ Holds instruction code

PG 12 Program counter Holds address of instruction
TR 16 Temporary register Holds temporary data
INPR 8 Input register Holds input character

OUTR 8 Output register Holds output character

image4.png

Figure 5-4 Basic computer registers connected to a common bus.

Instruction codes

image44.emf
unit-2.Lecture-5.ppt x

unit-2.Lecture-5.pptx
Computer instructions

The basic computer has 3 instruction code formats of 16 bits each.

1. Memory- reference instruction format

2. Register-reference instruction format

3. Input-output Instruction Format

Operation code part contain 3 bits and the meaning of the remaining 13 bits depends on the operation code encountered

Memory ref. instn. Uses 12 bits to specify an address and one bit (leftmost bit) to specify addressing mode I.I is 0 for direct address and 1 for indirect address

Register reference instn. Are recognized by the opcode 111 with a 0 in the leftmost bit of the instruction.this instruction specifies an operation on the AC register or a test of the AC register. As memory operand address is not needed, the other 12 bits are used to specify the operation or test to be performed

Similarly Input-Output instn. does not need a ref. to memory and is recognized by the operation code 111 with a 1bit in the leftmost bit of the instruction.the remaining 12 bits are used to specify the type of input-output operation or test performed.

The basic computer is capable performing 25 instructions, eventhough the opcode is 3 bits wide.

This is because, the register reference and input-Output instruction uses 12 bits as part of the operation code

INSTRUCTION SET COMPLETENESS: The set of instruction are said to be complete if the computer includes a sufficient number of instructions in each of the following categories.

1. Arithmetic , logical and shift instructions. They provide computational capabilities to process the data used.

2. Instructions for moving information to/from memory and processor registers . They are required because all computations are done in processor registers and bulk of the binary information is stored in memory.

3. Program control instructions together with instructions that check status conditions. These instructions provide decision making capabilities to the digital computer.

4. Input-output Instructions. Used to provide communication between the computer and the user. Programs and data needs to be transferred to the memory and results must be sent to the user.

Basic Computer instruction format

Minimum Set of instructions of a basic computer

Basic computer instructions

ADD, CMA and INC can be used to add and subtract binary numbers when negative numbers are represented in signed 2’s complement form.

CIR and CIL can be used for arithmetic shift and any other types of shift desired.

Multiplication and division can be done using addition, subtraction and shifting

AND, CMA and CLA are logic operation instructions. The AND and CMA provide NAND operation. With NAND operation all other logic operations can be performed with two variables.

LDA and STA are used to move data to/from memeory

BUN, BSA<and ISZ, together with 4 skip instructions, provide capabilities for program controland checking of status conditions

INP and OUT instructions cause information to be transferred between the computer and external devices

The basic set of instructions are not efficient, because frequently used instructions are not performed rapidly. An efficient set of instructions will include instructions such as subtract, multiply, OR and XOR. These operations must be programmed in the basic computer.

Timing and control

A master clock generator controls the timing of all registers in the basic computer. The clock pulses are applied to all registers and flip-flops in the system, including the flip-flops and registers in the control unit.

The clock pulses do not change the state of a register unless the register is enabled by a control signal.

The control unit generates the control signals and provide them to the control input of multiplexers in the common bus, processor registers and for microoperations for the accumulator.

In the hardwired control organization, the control logic is implemented with gates, lip-flops, decoders and other digital circuits.These circuits can be optimized for fast mode of operation.

In the microprogrammed control organization, the control information is stored in a control memory. The control memory is programmed to initiate the required sequence of microoperations

A hardwired control requires changes in the wiring among the various components if the design has to be changed or modified.

In the microprogrammed control, any required changes or modifications can be done by updating the microprogram in the control memory

Hardwired Control Unit for basic computer

Control Unit

The control unit of basic computer consists of two decoders, a sequence counter and a no. of control logic gates. Instruction is read from memory and placed in inst. register(IR). The instruction code is divided into 3 parts: I bit, the operation code and bits 0 through 11.

The operation code in bits 12 to 14 are decoded with a 3x8 decoder. The 8 outputs of the decoder are labelled as D0 to D7. Bit 15 is transferred to a flip-flop designated by the symbol I.

Bits 0 through 11 are applied to the control logic gates.

The 4 bit sequence counter can count in binary from 0 through 15. The outputs of the counter are decoded into 16 timing signals T0 through T15.

D3T4: SC 0

The sequence conter Sc responds to the + ve transition of the clock.

The positive clock transition labelled T0 will trigger only those registers whose control inputs are connected to timing signal T0.

D3T4 control condition is generated by an AND gate and it becomes active when both D3 & T4 are active.This active signal generates clear SC signal.

A memory read or write signal will be initiated with the rising edge of a timing signal. Memory cycle time is assumed to be less than the clock cycle time . This causes the memory cycle to be completed before the next clock goes through its positve transition. Then the clock transition can be used to load memory word into the register

Example of Control Timing Signals

T0: AR PC ; T0 is active during an entire clock cycle interval . During TO PC is placed on the bus and Ld input of AR is enabled. The actual transfer does not occur until the end of the clock cycle, when the clock goes through + ve clock transition

Micro-operations in the fetch and decode phase of instruction

Assumptions: PC is loaded with memory address where the first instruction of the program is stored.Sequence counter SC is cleared to zero, to provide a decoded timing signal T0. After every clockpulse Sc is incremented by 1 and timing signals go through a sequence T0,T1,T2,T3 and so on

The micro operation for the fetch and decode phases by RTL statements:

T0: AR PC

T1: IR M[AR]

 PC PC+1

T2: D0, D1, ,,,D7 Decode

 IR(12-14)

 AR IR(0-11), I IR(15)

Implementing RTL statements in T0 &T1 in a bus system

Providing data path for achieving the fetch phase of instruction

The first clock generates T0. T0 makes selection inputs 010 and causes PC to place it’s contents on to the bus. T0 also is load signal for AR register. But any transfer will be initiated by rising edge of clock pulse. Hence next clock pulse complete the transfer from PCTAR.

The next clock clears T0 and generates T1.

T1 state is to be used to move the content of memory addressed by AR into IR.Then PC is to be inremented by 1. To do this, (a).Read signal is to be applied to memory. (b).selection inputs is to be generated as 111, to select memory (c). Load signal to be applied to IR (d). PC is to be incremented by 1.

Within T1, memory data will be outputed to bus. The rising edge of T2 transfer memory data on the bus into IR and also increment PC.

During T2, The instruction is interpreted (decoded) by the decoder unit and the decoded signals are applied to control unit.

During T3 the control unit determine the type of instruction and determine the type of instruction after testing the appropriate instn. Bits.

1. Memory reference instructions either with direct or indirect address.

2. Register or I/O reference instructions. These instns. Are executed with clock associated with T3. The next clock clears SC to zero.

For memory ref. instn with indirect address, the rising edge of T4 will cause effective address from memory to be loaded into address register and the indicated operation is carried out

Flow chart for instruction cycle

Control functions and micro-operations for the register- reference Instn

Reg. ref. Instructions are executed with the clock transitions associated with T3. These instn. Use bits 0 through 11 of instn. Code to specify one of 12 instructions. They are also transferred to AR during T2.The control function is distinguished by one of the bits in IR (0-11)

image1.png

Figure 5-5 Basic computer instruction formats.

15 14 12) 11 0

(a) Memory — reference instruction

15 12 11 0

ety a Register operation (Opcode = 111, I=0)

(b) Register — reference instruction
15 12 11 0

(c) Input — output instruction

image2.png

TABLE 5-2 Basic Computer Instructions

Hexadecimal code

Symbol I=0 I=1 Description

AND Oxxx 8xxx AND memory word to AC
ADD 1xxx 9xxX Add memory word to AC
LDA 2xxx Axxx Load memory word to AC

STA 3xxx Bxxx Store content of AC in memory
BUN 4xxx Cxxx Branch unconditionally

BSA Sxxx Dxxx Branch and save return address
1Sz 6xxx Exxx Increment and skip if zero
CLA 7800 Clear AC

CLE % 7400 Clear E

CMA 7200 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC and E

CIL 7040 Circulate left AC and E

INC 7020 Increment AC

SPA 7010 Skip next instruction if AC positive
SNA 7008 Skip next instruction if AC negative
SZA 7004 Skip next instruction if AC zero
SZE 7002 Skip next instruction if E is 0
HLT 7001 Halt computer

INP F800 Input character to AC

ouT F400 Output character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION F080 Interrupt on

IOF F040 Interrupt off

image3.png

Instruction register (/R)

Other inputs

Do

Da Control

outputs

Ty

Increment (INR)
Clear (CLR)
Clock

- Figure 5-6 Control unit of basic computer.

image4.png

image5.png

image6.png

T
r IR < MI[AR], PC<PC+1 ‘

1 >

Decode operation code in /R (12— 14)

AR IR (0—11), I < IR (15)

(Registeror I/0) =1

=0 (register)

T3 T3

Execute Execute
input-output register-reference
instruction instruction

SC«0 SC«0

Execute
memory-reference
instruction

SC«0

Figure 5-9 Flowchart for instruction cycle (initial configuration).

image7.png

TABLE 5-3 Execution of Register-Reference Instructions

D,I'T; = r (common to all register-reference instructions)

IR(i) = B; [bit in IR(0-11) that specifies the operation]

CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT

r:

rBy:
rBg:
rB;:
rBg:
rBs:
rBy:
rBs:
rB;:
rBi:
rBo:

rBu:
rByg:

SC <0

AC <0

B0

AC<AC

E<E

AC «shr AC, AC(15)«<E, E < AC(0)
AC «<shl AC, AC(0) < E, E < AC(15)
AC<AC+1

If (AC(15) = 0) then (PC < PC + 1)
If (AC(15) = 1) then (PC < PC + 1)
If (AC = 0) then PC < PC + 1)

If (E = 0) then (PC<PC + 1)

S <0 (S is a start—stop flip-flop)

Clear SC

Clear AC

Clear E
Complement AC
Complement E
Circulate right
Circulate left
Increment AC
Skip if positive
Skip if negative
Skip if AC zero
Skip if E zero
Halt computer

Computer instructions

image45.emf
unit-2.Lecture-6.ppt x

unit-2.Lecture-6.pptx
Flow chart for Memory reference instruction

Memory reference reference instruction

Nanoinstructions and nanomemory

Instead of encoding individual microoperations, it is possible to encode all microoperations in a single field. This can be done when the same microooperations occur together repeatedly in the microcode. This microcode memory outputs a value that points to a location in nanomemory, as shown in fig. The nanomemory act as a look-up table and output nanoinstructions which is the microoperation for that micro instruction. The bits used for sequencing is not changed.

Microcode Memory

Nanomemory

Microoperations

SEL

ADD

Generating microoperations using nanomemory

Nanoinstructions cont.

Using nanomemory can reduce the overall size of memory in a microsequencer.If 10 different microinstructions assert exactly the same microoperations, all of these microinstructions can point to a single memory in nanomemory. Consider a microsequencer with 128 microinstructions and 32 different microoperations. A horizontally microcoded microsequencer would require 128x32= 4096 bits of storage for it’s microoperations. Now assume that only 16 unique combinations of microoperations occur in these 128 microinstructions.

We could store these 16 patterns in a 16x32 nanomemory.

Each of the 128 microinstructions would require a 4 bit field to point to the correct pattern in nanomemory. This would require a 16x32=512 bits for nanoemory and an additional 124x4=512 bits for pointers in microcode memory.The total of 1024 bits is one fourth the number of bits used by horizontal microcode to generate the same microoperations.

image1.png

Memory — reference instruction

AND ADD LDA STA
DoTy DTy Y DyTy DsTy
DR < M[AR] I DR < M [MAR] DR < M [AR] M [AR] < AC
SC«0
l DoTs l D\Ts Y D,Ts
AC <« ACNADR AC « AC +DR AC « DR
E-<Coun

SC«0 SC «0 SC«0

BUN BSA 182

PC < AR

SC <0

M [AR] « PC

AR—AR +1

DeTs

DR < M [AR]

M [AR] < DR
¥ (DR = 0)

then (PC <~ PC +1)
SC <0

Figure 5-11 Flowchart for memory-reference instructions.

image2.png

TABLE 5-4 Memory-Reference Instructions

Operation
Symbol decoder Symbolic description
AND D, AC<AC N\ M[AR]
ADD D, AC<—AC + M[AR], E<C,,
LDA D, AC < MI[AR]
STA D, M[AR]<—AC
BUN D, PC<AR
BSA Ds M[AR]<-PC, PC<AR +1
sz Ds M[AR] < M[AR] + 1,

If M[AR] + 1 = 0 then PC<PC+1

image3.png

BUN: Branch Unconditionally

image4.png

BSA: Branch and Save Return Address

image5.png

Figure 5-10 Example of BSA instruction execution.

Memory

0 BSA 135

1 BUN 135

(a) Memory, PC, and AR at time T,

20
21

135
PC =136

Memory

0 BSA

Next instruction

21

Subroutine

1 BUN

135

135

(b) Memory and PC after execution

image6.png

Figure 5-12 Input-output configuration.

Input — output Serial Computer
terminal communication registers and
interface flip-flops
—_—

Receiver
interface

Transmitter
interface

Keyboard

image7.png

TABLE 5-5 Input-Output Instructions

D,IT; = p (common to all input—output instructions)

IR(i) = B; [bit in IR(6-11) that specifies the instruction]

p:
INP pBu:
OUT pBi:
SKI pBo:
SKO pBs
ION pBs:

IOF PBs:

SC<0

AC(0-7) < INPR, FGI<0
OUTR < AC(0-7), FGO <0

If (FGI = 1) then (PC«PC + 1)
If (FGO = 1) then (PC «<PC + 1)
IEN <1

IEN <0

Clear SC

Input character
Output character
Skip on input flag
Skip on output flag
Interrupt enable on
Interrupt enable off

image8.png

Instruction cycle =1 Interrupt cycle

Fetch and decode
instruction

Store return address
in location 0
M[0] «PC

Execute
instruction

Branch to location 1
PCe1

Figure 5-13 Flowchart for interrupt cycle.

image9.png

Figure 5-14 Demonstration of the interrupt cycle.
Memory Memory

0 0 256

110 BUN 1120 PC=10[10 BUN 1120

255 _ 255)
PC =256 Mam - 256 Main
program program
1120 1120
1/0 70
program program

1 BUN 0 1 BUN 0

(a) Before interrupt (b) After interrupt cycle

image46.emf
unit-2, l7.ppt

lecture-2.pptx
Basic structure of computers

Computer organization

It describes the functions of various hardware components of digital computer and the interconnections to achieve architectural specifications. The organization attributes include the hardware details transparent to the programmer such as control signals, interface between the computer and peripherals and memory technology used. Computer hardware consists of electronic circuits,storage media,electromechanical equipment and commn.facilities

Computer architecture : It refers to instruction set, no. of bits used for data representation, I/O mechanism and addressing techniques used for memory. Deals with selection of functional units such as processor and memory and how they shoud be interconnected in a computer system It deals more on design aspects.

Both hardware and software design aspects of various computer components are to be considered to achieve a good understanding of computer systems.

Computer types

Digital computer is a fast electronic calculating machine.

It accepts digitized information, processes as per the list of stored instructions and produces the resulting output information

List of instructions are called computer program

Internal storage is called computer memory

Computers are of different types that differ widely in size, cost, computational power and intended use

PCs are used in homes, schools and business offices which comes under desktop computer

Portable notebook computers are a compact version of he PC

Workstations have graphics input/output capability, have significantly more computational power than PCs but with the size of PCs

Computer types

A range of large and very powerful computer systems exist beyond workstations

Enterprise systems and servers comes at the low end of the range and super computers at the high end.

Enterprise systems or mainframes are used for business data processing in medium to large corporations

Servers contain sizable database storage units and are capable of handling large volume of requests to access the data.

In many cases servers are widely accessible to the education, business and personal user communities. The requests and response are usually transported over Internet communication facilities

Supercomputers are used for the large- scale numerical calculations required in applications such as weather forecasting and aircraft design and simulation

In enterprise systems, servers and supercomputers, the functional units, including the multiple processors, may consist of a number of separate and often large units

Functional units

Input,memory,arithmetic and logic, output and control units are the main functional units.

Machine Instructions: 1.govern the transfer of information within the computer as well as between the computers and it’s I/O devices 2. Specify the arithmetic and logic operations to be performed

A list of instructions that perform a task is called a program.

Data: Data are numbers and encoded characters, that are used as operands in instructions. It is also, often used to mean any digital information. For example, a source program is data for a compiler which coverts it into machine instructions(object program}

Information must be encoded into a suitable format so that it can be handled by a computer.

Each number ,character or instruction is encoded as a string of binary digits called bits, each having one of two possible values, 0 or 1.

Numbers are represented in positional binary notation or BCD format

Alphanumeric characters are expressed in terms of binary codes. ASCII and EBCDIC are two most widely used codes.

The computer is completely controlled by stored program except for external interupttion from operator or I/O devices.

Basic functional units of a computer

I/O

Input

Output

Processor

Arithmetic and

Lgic unit

Control

Memory

Memory Unit

It store programs and data. Primary storage and secondary storage are 2 classes of storage

Primary storage: It is fast memory.It contains a large number of semiconductor storage cells that is capable of storing one bit of information.These cells are processed in groups of fixed size called words

The memory is organized so that one word of n bits can be stored or retrieved from memory in one basic operation .

A given word is accessed by specifying it’s address and issuing a control command.

Typical word-lengths range from 16 to 64 bits.

Small machines consists of 10’s of millions of words. Medium and large machines normally have many 10’s or 100’s of millons of words

Memory unit or primary storage

Memory in which any location can be reached in a short and fixed amount of time after specifying it’s address is called random-access memory(RAM). The time required to access one word is called the memory access time. It typically ranges from a few ns to 100 ns for modern RAM units.

The memory of a computer is normally implemented as a memory hierarchy of 3 or 4 levels of semiconductor RAM units with different speeds and sizes.

The small, fast, RAM units are called caches .They are tightly coupled with the processor and is often provided on the processor chip itself to achieve high performance

The largest and slowest unit is referred to as the main memory

Secondary storage And I/O

Although primary storage is essential, it tends to be expensive. When large amounts of data and many programs are to be stored, cheaper secondary storage is used particularly for information that is infrequently used.A wide range of secondary storage is available, including magnetic disks and tapes and optical disks(CD-ROMS)

Input unit: Keyboard is well known. Others include joysticks, trackballs and mouse are used as graphic input devices in conjunction with displays. Microphone is used along with ADC.

Output Unit:

Most familiar example is printer. Printer employs mechanical impact heads, ink jet streams, or photocopying techniques as in laser printers to perform printing. Printers are capable of printing 10000 lines per minute.

Some units such as graphic displays provide both an output function and an input function. Hence in many cases the term I/O is used .

Arithmetic and logic unit (ALU)

Most computer operations are executed in the ALU of the processor. Arithmetic and logic operation is performed by the ALU by bringing the required operands into the processor registers. Access times to registers are faster than the access time to the fastest cache unit in the memory hierarchy.

The control and ALU units are many times faster than other devices connected to the computer system. This enable a single processor to control a no: of external devices such as keyboards, displays magnetic and optical disks, sensors and mechanical controllers.

OUTPUT UNIT

It function is to send the processed result to outside world.eg. Printer.

Printers employ mechanical impact heads, ink jet streams or photocopying techniques, as in laser printers, to perform the printing.

Printers can be produced to print 10,000 lines per minute. This is tremendous speed for a mechanical device but still very slow when compared to electronic speed of processor unit.

Control unit

It co-ordinates the operation of ALU, I/O , and memory. It sends control signals to other units and senses their states.

I/O transfers are controlled by the instructions of I/O programs that identify the devices involved and the information to be transferred. But the actual timing signals that govern the transfers are generated by the control circuits.

Data transfers between the processor and memory are also controlled by the control unit through timing signals.

Much of the control circuitry is physically distributed throughout the machine. A large set of control lines carries the signals used for timing and synchronization of events in all units

Summary of computer operations

The computer accepts information in the form of programs and data through an input unit and stores it in the memory.

Information stored in the memory is fetched, under program control, into an arithmetic and logic unit, where it is processed.

Processed information leaves the computer through an output unit.

All activities inside the machine are directed by the control unit

Basic operational concepts

Performing a task

 Store the program in the memory; fetch the individual instructions from memory to processor for execution.

Instructions with memory access and ALU operation are combined in one instruction.

Ex: ADD LOCA, R0 1.Instn. Fetch from memory 2. fetch operand from LOCA from memory. 3. Add operand to contents of R0 and store the result into R0.Modern computers perform it in two instns.

That is load LOCA , R1 and Add R1, R0

Process of execution of these instructions

Few operational details of processor operation with memory

MAR,MDR,IR,PC and registers

Interrupt Signal and interrupt-service routine

BUS STRUCTURE: For reasonable speed of operation, a computer must be organized so that all of it’s units handle one full word of data at a given time.

During data transfer between units, all bits in a data word are transferred in parallel.That is, the bits are transferred simultaneously over many lines, one bit per line.

A group of lines that serve as a connecting path for several devices is called a bus.Bus lines carry data, address and control information

The simplest way to interconnect functional units is to use a single bus.

Buffer registers to smooth out the differences in timing among processors, memories and external devices. Only two units use the bus at any given time

Connections between processor and memory

Memory

Control

ALU

N ge

general purpose

Registers

ALU

Control

MDR

R0

R1

.

R n-i

MAR

PC

IR

SYSTEM SOFTWARE

System software is a collection of programs that are executed as needed to perform functions such as

Receiving and interpreting user commands

Entering and editing application programs and storing them as files in secondary storage devices

Managing the storage and retrieval of files in secondary storage devices

Running standard application programs such as word processors, spreadsheets or games, with data supplied by the user

Controlling I/O units to receive input information and produce output results

Translating programs from source form prepared by the user into object form consisting of machine instructions

Linking and running user- written application programs with existing standard library routines, such as numerical computation packages

Functions of compiler, text editor and operating system

OS is a large program, or actually a collection of routines, that is used to control the sharing of processor time and interaction among various computer units as they execute application programs.

The OS routines perform the tasks required to assign computer resources to individual application programs.These tasks include assigning memory and magnetic disk space to program and data files, moving data between memory and disk units and handling I/O operations.

Multiprogramming or multitasking

Time Line Diagram

PERFORMANCE

Speed of execution of programs is a performance measure

The design of computer hardware and machine language instructions, affect the speed of program execution

Compiler design also affect the performance

For best performance, it is necessary to design the complier, the machine instruction set and the hardware in a co-ordinated way

Elapsed time, the total time required to execute a program is a measure of performance of the entire computer system. It is affected by the speed of the processor, disk and the printer

The sum of the periods in which the processor is active is called processor time needed to execute the program.

Processor time depends on the hardware involved in the execution of instructions .This hardware comprises processor and the memory which are connected by a bus.

If the data and instructions are available in the processor chip in cache memory, then the instruction execution is faster

To execute a machine instructions, the processor divides the actions to be performed into a sequence of basic steps, such that each step is completed in one clock cycle. The clock rates ranges from few 100 MHz to a few GHz.

BASIC PERFORMANCE EQUATION

T = NxS/R is often referred to as the performance equation

T is the processor time required to execute a program made in HL language.

N is the number of machine language instructions in the object program which was made using a compiler on source program

S is the average number of basic steps needed to execute one machine instruction, where each basic step is completed in one clock cycle

R is the clock rate in cycles per second.

To achieve high performance, the computer designer must find ways to reduce N and S and increase R

PIPELINING AND SUPERSCALAR OPERATION

A substantial improvement in performance can be achieved by overlapping the execution of successive instructions, using a technique called pipelining. Ex. Add r1, r2,r3 ; this causes r3=r2+r2; The process is as below

R1 and r2 are first transferred to the inputs of ALU; Addition operation is done; the sum is transferred to r3.Pipelining can be done as below.

Processor can bring the next instruction fro m memory while addition is being done; if the next instruction also uses Alu, the operands for the same can be transferred to ALU inputs during the same time, the sum of add instruction is transferred to r3. In ideal case maximum degree of overlapping is possible when execution proceeds at the rate of one instruction completed in each clock cycle. Individual instructions still require several clock cycles to complete.

A high degree of concurrency can be achieved if multiple instructions pipelines are implemented in the processor. This is done by using multiple functional units and thereby creating parallel paths to execute different instructions in parallel

The above scheme causes the execution of several instructions in every clock cycles. This mode of operation is called superscalar execution. If it can be sustained for a long time during program execution, the effective value of S can be reduced to less than one.

Clock rate can be increased by using better IC technology

CISC vs RISC

CISC:

Uses large no: of instns. And large variety of addressing modes

Has variable lenth instruction formats

Program length is less

No. of instn. formats is more

Instn. Decoding is complex

Regiser memory management is required Main memory management is not required

The control logic design is complex

Slower computation due to more instructions and addressing modes

CISC implements microprogramed control

 Instruction is executed in multiple clock cycle

It support indirect addressing modes

Includes memory to register, memory to memory alongwith register to register operations.

RISC:

Uses relatively less no of instn. and few addressing modes.

Has fixed length , easily decoded instn. Format

Program length is more

No. of instn. formats is less

Instn decoding is simpler.

Regiser memory management is not required

Main memory management is required

The control logic design is simple

Faster computation due to less instructions and addressing modes

RISC implements hardware control

Instruction is executed in a single clock cycle

RISC does not support indirect addressing mode

Includes only register to register operations

Performance measurement

Computer designers use performance estimate, manufacturers use performance indicators in the marketing process, Buyer use such data to choose one from many computer models

Execution time T , is not easy to compute; clockspeed and various architectural features are not reliable indicators of expected performance. Hence computer performance is measured by benchmark programs

The performance measure is given by the time to execute a given benchmark program.

Real application program s are used as benchmark programs. SPEC, a non-profit organisation, SYSTEM PERFORMANCE EVALUATION CORPORATION, selects and publish different application programs for different application domains, together with test results for many commercially available computers

Programs selected range from game playing, compiler and database applications to numerically intensive programs in autophysics and quantum chemistry. In each case the program is compiled for the computer under test and the running time on a real computer is measured. The same program is compiled also run on a reference computer

The spec rating is computed as follows

 Running time on the ref. comp.

SPEC rating = ---------------------------------------

 running time on the com. Under test

The test is repeated for all the programs in the SPEC suit, and the geometric mean of the program is computed.

Multiprocessors and Multicomputers

Multiprocessor systems contain a no of processor units and provide high performance.

They execute different application tasks in parallel or subtasks of a large task in parallel

They are called shared – memory multiprocessor systems as all processors usually have access to all of the memory in such systems

Systems are of increased complexity and cost and use more complex interconnection network

High performance can be achieved by interconnecting group of complete computers

The computers have normally have access to their own memory units

The tasks executed by these computers exchange messages over a communication network

These computers are called message – passing mlticomputers

image3.png

increasing costbi

‘The Memory Hierarchy

Register

Cache
Main memory
Magnetic Disk

Magnetic Tape & Optical Disk

fioedeo Busearu

oun ssacoe Buserou

‘The Memory Hierarchy (contd)

‘Some typical characterisics:

1. Processor registers:
- 32 registers of 32 b each - 128 bytes
- access time - fow nanoseconds.

2. Onchip cache memory:

3. Off-chip cache memory:
- capaciy = few hundred Kbytes
- access time - fens of nancseconds

4. Main memory:
- capaciy - tens of Mbytes

- access time = ~100 nanoseconds
5. Hard disk:
- capacty - few Gbyles

- access time - tens of millseconds

image4.png

Sign and Magnitude Representation

Decim Decimat

o o

' o001 a

2 o010

3 0

4 o -
H o0t =
6 oo -
7 ot a

* Easy for human to understand, but
5 0has two representatior

problem for programmer.
 Need different ways to do addition and subtraction.
2 Extra step to set sign for the result: a problem for hardware.

= Especially when a<b, how to do a-b ?

image5.png

Two’s Complement Representation

's complement representation of negative numbers
« Bitwise Inverse and add 1
* The MSB is always “1” for negative number => sign bit

* Biggest 4-bit Binary Number: 7 Smallest 4-bit Binary Number: -8
Biwise
Decimal Decimal Imerse 2's Complement
o o
' a
2 2 1oy
3 3 1100
s 4 11
5 B 1010
o - 1001
1 a 1000
¥ N o
lgar” Posiive Number!

Basicstructure of computers

unit-2, l7.ppt
*

Central Processing Unit

Computer Organization

Computer Architectures Lab

CENTRAL PROCESSING UNIT

		 Introduction

		 General Register Organization

		 Stack Organization

		

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

MAJOR COMPONENTS OF CPU

Introduction

		 Storage Components

 Registers

 Flags

		 Execution (Processing) Components

 Arithmetic Logic Unit(ALU)

 Arithmetic calculations, Logical computations, Shifts/Rotates

		 Transfer Components

 Bus

		 Control Components

 Control Unit

Register

File

ALU

Control Unit

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

REGISTERS

		In Basic Computer, there is only one general purpose register, the Accumulator (AC)

		In modern CPUs, there are many general purpose registers

		It is advantageous to have many registers

		Transfer between registers within the processor are relatively fast

		Going “off the processor” to access memory is much slower

	

		How many registers will be the best ?

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

GENERAL REGISTER ORGANIZATION

General Register Organization

MUX

SELA

{

MUX

}

SELB

ALU

OPR

R1

R2

R3

R4

R5

R6

R7

Input

3 x 8

decoder

SELD

Load

(7 lines)

Output

A bus

B bus

Clock

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

OPERATION OF CONTROL UNIT

The control unit

 Directs the information flow through ALU by

 - Selecting various Components in the system

 - Selecting the Function of ALU

Example: R1  R2 + R3

[1] MUX A selector (SELA): BUS A  R2

[2] MUX B selector (SELB): BUS B  R3

[3] ALU operation selector (OPR): ALU to ADD

[4] Decoder destination selector (SELD): R1  Out Bus

Control Word

Encoding of register selection fields

Control

Binary

Code	SELA	SELB	SELD

000	Input	Input	None

001	 R1	 R1	 R1

010	 R2	 R2	 R2

011	 R3	 R3	 R3

100	 R4	 R4	 R4

101	 R5	 R5	 R5

110	 R6	 R6	 R6

111	 R7	 R7	 R7

SELA

SELB

SELD

OPR

3

3

3

5

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

ALU CONTROL

Encoding of ALU operations

 OPR

Select	Operation	Symbol	

00000	Transfer A	TSFA

00001	Increment A	INCA

00010	ADD A + B	ADD

00101	Subtract A - B	SUB

00110	Decrement A	DECA

01000	AND A and B	AND

01010	OR A and B	OR

01100	XOR A and B	XOR

01110	Complement A	COMA

10000	Shift right A	SHRA

11000	Shift left A	SHLA

Examples of ALU Microoperations

	 Symbolic Designation

Microoperation	SELA	SELB	SELD	OPR	 Control Word

Control

R1  R2  R3 R2 R3	 R1 SUB 010 011 001 00101

R4  R4  R5 R4 R5	 R4 OR 100 101 100 01010

R6  R6 + 1	 R6	 - R6 INCA 110 000 110 00001

R7  R1	 R1	 -	 R7 TSFA 001 000 111 00000

Output  R2 R2	 - None TSFA 010 000 000 00000

Output  Input Input	 - None TSFA 000 000 000 00000

R4  shl R4	 R4	 - R4 SHLA 100 000 100 11000

R5  0	 R5	 R5	 R5 XOR 101 101 101 01100

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

REGISTER STACK ORGANIZATION

 Register Stack

Push, Pop operations

/* Initially, SP = 0, EMPTY = 1, FULL = 0 */

PUSH

POP

Stack Organization

SP  SP + 1	 DR  M[SP]

M[SP]  DR	 SP  SP  1

If (SP = 0) then (FULL  1)	 If (SP = 0) then (EMPTY  1)

EMPTY  0 	 FULL  0

Stack

 - Very useful feature for nested subroutines, nested interrupt services

 - Also efficient for arithmetic expression evaluation

 - Storage which can be accessed in LIFO

 - Pointer: SP

 - Only PUSH and POP operations are applicable

A

B

C

0

1

2

3

4

63

Address

FULL

EMPTY

SP

DR

Flags

Stack pointer

stack

6 bits

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

MEMORY STACK ORGANIZATION

Stack Organization

 - A portion of memory is used as a stack with a

 	processor register as a stack pointer

 - PUSH:	SP  SP - 1

 M[SP]  DR

 - POP:	DR  M[SP]

 SP  SP + 1

Memory with Program, Data,

	and Stack Segments

4001

4000

3999

3998

3997

3000

Data

(operands)

Program

(instructions)

1000

PC

AR

SP

stack

Stack grows

In this direction

- Most computers do not provide hardware to check stack overflow (full

 stack) or underflow (empty stack)  must be done in software

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

REVERSE POLISH NOTATION

A + B	Infix notation

+ A B	Prefix or Polish notation

A B +	Postfix or reverse Polish notation

 - The reverse Polish notation is very suitable for stack 	manipulation

		 Evaluation of Arithmetic Expressions

 Any arithmetic expression can be expressed in parenthesis-free

 Polish notation, including reverse Polish notation

(3 * 4) + (5 * 6)  3 4 * 5 6 * +

Stack Organization

		 Arithmetic Expressions: A + B

3

3

12

12

12

12

42

4

5

5

6

30

3

4

*

5

6

*

+

image47.emf
unit-2, l8.ppt

unit-2, l8.ppt
*

Central Processing Unit

Computer Organization

Computer Architectures Lab

CENTRAL PROCESSING UNIT

		 Instruction Formats

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

PROCESSOR ORGANIZATION

		In general, most processors are organized in one of 3 ways

		Single register (Accumulator) organization

		Basic Computer is a good example

		Accumulator is the only general purpose register

		General register organization

		Used by most modern computer processors

		Any of the registers can be used as the source or destination for computer operations

		Stack organization

		All operations are done using the hardware stack

		For example, an OR instruction will pop the two top elements from the stack, do a logical OR on them, and push the result on the stack

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

INSTRUCTION FORMAT

OP-code field - specifies the operation to be performed

Address field - designates memory address(es) or a processor register(s)

Mode field - determines how the address field is to be interpreted (to

	 get effective address or the operand)

		 The number of address fields in the instruction format

	depends on the internal organization of CPU

		 The three most common CPU organizations:

Instruction Format

Single accumulator organization:

	ADD	X	 /* AC  AC + M[X] */

General register organization:

	ADD	R1, R2, R3	 /* R1  R2 + R3 */		

 ADD	R1, R2	 /* R1  R1 + R2 */	

	MOV	R1, R2	 /* R1  R2 */		

 ADD	R1, X	 /* R1  R1 + M[X] */

Stack organization:

	PUSH	X	 /* TOS  M[X] */		

 ADD	

		 Instruction Fields

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

		 Three-Address Instructions

	Program to evaluate X = (A + B) * (C + D) :

		ADD	R1, A, B	 /* R1  M[A] + M[B]	*/		

 		ADD	R2, C, D	 /* R2  M[C] + M[D]	*/		

 		MUL	X, R1, R2	 /* M[X]  R1 * R2		*/

			- Results in short programs

 			- Instruction becomes long (many bits)

		 Two-Address Instructions

	 Program to evaluate X = (A + B) * (C + D) :

		MOV R1, A /* R1  M[A] */

		ADD R1, B /* R1  R1 + M[A] */

		MOV R2, C /* R2  M[C] */

		ADD R2, D /* R2  R2 + M[D] */

		MUL R1, R2 /* R1  R1 * R2 */

		MOV X, R1 /* M[X]  R1 */

	

Instruction Format

THREE, AND TWO-ADDRESS INSTRUCTIONS

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

ONE, AND ZERO-ADDRESS INSTRUCTIONS

		 One-Address Instructions

- Use an implied AC register for all data manipulation

- Program to evaluate X = (A + B) * (C + D) :

Instruction Format

LOAD 	A /* AC  M[A] 	*/

ADD 	B /* AC  AC + M[B] */

STORE 	T /* M[T]  AC 	*/

LOAD 	C /* AC  M[C] 	*/

ADD 	D /* AC  AC + M[D]	*/

MUL 	T /* AC  AC * M[T]	*/

STORE 	X /* M[X]  AC 	*/

		 Zero-Address Instructions

- Can be found in a stack-organized computer

- Program to evaluate X = (A + B) * (C + D) :

PUSH	A	/* TOS  A	*/				

PUSH	B	/* TOS  B	*/					

ADD		/* TOS  (A + B)	*/				

PUSH	C	/* TOS  C	*/				

PUSH	D	/* TOS  D	*/					

ADD		/* TOS  (C + D)	*/					

MUL		/* TOS  (C + D) * (A + B) */

POP	X	/* M[X]  TOS	*/

image48.emf
unit-2, l9.ppt

unit-2, l9.ppt
*

Central Processing Unit

Computer Organization

Computer Architectures Lab

CENTRAL PROCESSING UNIT

		

		 Addressing Modes

		 Data Transfer and Manipulation

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

ADDRESSING MODES

Addressing Modes

		 Addressing Modes

 * Specifies a rule for interpreting or modifying the

 address field of the instruction (before the operand

 is actually referenced)

 * Variety of addressing modes

 - to give programming flexibility to the user

 - to use the bits in the address field of the

 instruction efficiently

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

TYPES OF ADDRESSING MODES

		 Implied Mode

	Address of the operands are specified implicitly

	in the definition of the instruction

 	 - No need to specify address in the instruction

 	 - EA = AC, or EA = Stack[SP]

	 - Examples from Basic Computer

		CLA, CME, INP

		 Immediate Mode

	Instead of specifying the address of the operand,

 	operand itself is specified

 	 - No need to specify address in the instruction

 	 - However, operand itself needs to be specified

 	 - Sometimes, require more bits than the address

 	 - Fast to acquire an operand

Addressing Modes

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

TYPES OF ADDRESSING MODES

		 Register Mode

 	Address specified in the instruction is the register address

 	 - Designated operand need to be in a register

 	 - Shorter address than the memory address

 	 - Saving address field in the instruction

 	 - Faster to acquire an operand than the memory addressing

 	 - EA = IR(R) (IR(R): Register field of IR)

		 Register Indirect Mode

	Instruction specifies a register which contains

 	the memory address of the operand

 - Saving instruction bits since register address

 is shorter than the memory address

 - Slower to acquire an operand than both the

 register addressing or memory addressing

 - EA = [IR(R)] ([x]: Content of x)

		 Autoincrement or Autodecrement Mode

 - When the address in the register is used to access memory, the 	 value in the register is incremented or decremented by 1

	 automatically

Addressing Modes

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

TYPES OF ADDRESSING MODES

Addressing Modes

		 Direct Address Mode

 	Instruction specifies the memory address which

 	can be used directly to access the memory

 	- Faster than the other memory addressing modes

 	- Too many bits are needed to specify the address

 for a large physical memory space

 - EA = IR(addr) (IR(addr): address field of IR)

		 Indirect Addressing Mode

	The address field of an instruction specifies the address of a memory 	location that contains the address of the operand

 - When the abbreviated address is used large physical memory can be 	 addressed with a relatively small number of bits

 - Slow to acquire an operand because of an additional memory access

 - EA = M[IR(address)]

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

TYPES OF ADDRESSING MODES

Addressing Modes

		 Relative Addressing Modes

 	The Address fields of an instruction specifies the part of the address 		(abbreviated address) which can be used along with a designated 		register to calculate the address of the operand

 - Address field of the instruction is short

 - Large physical memory can be accessed with a small number of 			address bits

 - EA = f(IR(address), R), R is sometimes implied

 3 different Relative Addressing Modes depending on R;

 * PC Relative Addressing Mode (R = PC)

 - EA = PC + IR(address)

 * Indexed Addressing Mode (R = IX, where IX: Index Register)

 - EA = IX + IR(address)

 * Base Register Addressing Mode

			(R = BAR, where BAR: Base Address Register)

 - EA = BAR + IR(address)

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

ADDRESSING MODES - EXAMPLES -

Addressing

Mode

Effective

Address

Content

of AC

Addressing Modes

Direct address	500	/* AC  (500)	 */ 800

Immediate operand	 -	/* AC  500	 */ 500

Indirect address	800	/* AC  ((500))	 */ 300

Relative address	702	/* AC  (PC+500)	 */ 325

Indexed address	600	/* AC  (RX+500)	 */ 900

Register	 -	/* AC  R1	 */ 400

Register indirect	400 /* AC  (R1)	 */ 700

Autoincrement	400 	/* AC  (R1)+	 */ 700

Autodecrement	399 	/* AC  -(R)	 */ 450

Load to AC Mode

Address = 500

Next instruction

200

201

202

399

400

450

700

500

800

600

900

702

325

800

300

Memory

Address

PC = 200

R1 = 400

XR = 100

AC

image49.emf
unit-2,l-10.ppt

unit-2,l-10.ppt
*

Central Processing Unit

Computer Organization

Computer Architectures Lab

CENTRAL PROCESSING UNIT

		

		

		 Program Control

		

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

PROGRAM CONTROL INSTRUCTIONS

Program Control

PC

+1

In-Line Sequencing (Next instruction is fetched from the next adjacent location in the memory)

Address from other source; Current Instruction, Stack, etc; Branch, Conditional Branch, Subroutine, etc

		 Program Control Instructions

 Name Mnemonic

Branch BR

Jump JMP

Skip SKP

Call CALL

Return RTN

Compare(by ) CMP

Test(by AND) TST

* CMP and TST instructions do not retain their

 results of operations ( and AND, respectively).

 They only set or clear certain Flags.

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

CONDITIONAL BRANCH INSTRUCTIONS

BZ	Branch if zero	Z = 1

BNZ	Branch if not zero	Z = 0

BC	Branch if carry	C = 1

BNC	Branch if no carry	C = 0

BP	Branch if plus	S = 0

BM	Branch if minus	S = 1

BV	Branch if overflow	V = 1

BNV	Branch if no overflow	V = 0

BHI	Branch if higher	A > B

BHE	Branch if higher or equal	A  B

BLO	Branch if lower	A < B

BLOE	Branch if lower or equal	A  B

BE	Branch if equal	A = B

BNE	Branch if not equal	A  B

BGT	Branch if greater than	A > B

BGE	Branch if greater or equal	A  B

BLT	Branch if less than	A < B

BLE	Branch if less or equal	A  B

BE	Branch if equal	A = B

BNE	Branch if not equal	A  B

Unsigned compare conditions (A - B)

Signed compare conditions (A - B)

Mnemonic Branch condition Tested condition

Program Control

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

SUBROUTINE CALL AND RETURN

Call subroutine

Jump to subroutine

Branch to subroutine

Branch and save return address

		 Fixed Location in the subroutine (Memory)

		 Fixed Location in memory

		 In a processor Register

		 In memory stack

 - most efficient way

Program Control

		 Subroutine Call

		 Two Most Important Operations are Implied;

 * Branch to the beginning of the Subroutine

 - Same as the Branch or Conditional Branch

 * Save the Return Address to get the address

 of the location in the Calling Program upon

 exit from the Subroutine

		 Locations for storing Return Address

CALL

 SP  SP - 1

 M[SP]  PC

 PC  EA

RTN

 PC  M[SP]

 SP  SP + 1

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

PROGRAM INTERRUPT

 Types of Interrupts

External interrupts

 External Interrupts initiated from the outside of CPU and Memory

 - I/O Device → Data transfer request or Data transfer complete

 - Timing Device → Timeout

 - Power Failure

 - Operator

Internal interrupts (traps)

 Internal Interrupts are caused by the currently running program

 - Register, Stack Overflow

 - Divide by zero

 - OP-code Violation

 - Protection Violation

Software Interrupts

 Both External and Internal Interrupts are initiated by the computer HW.

 Software Interrupts are initiated by the executing an instruction.

 - Supervisor Call → Switching from a user mode to the supervisor mode

 → Allows to execute a certain class of operations

																which are not allowed in the user mode

Program Control

*

Central Processing Unit

Computer Organization

Computer Architectures Lab

INTERRUPT PROCEDURE

- The interrupt is usually initiated by an internal or

 an external signal rather than from the execution of

 an instruction (except for the software interrupt)

- The address of the interrupt service program is 	

 determined by the hardware rather than from the 	

 address field of an instruction

- An interrupt procedure usually stores all the

 information necessary to define the state of CPU

 rather than storing only the PC.

 The state of the CPU is determined from;

 Content of the PC

 Content of all processor registers

 Content of status bits

 Many ways of saving the CPU state

 	depending on the CPU architectures

Program Control

Interrupt Procedure and Subroutine Call

image50.emf
unit-2.Lecture-11.pp tx

unit-2.Lecture-11.pptx
Register transfer lanquage

RTL & Micro operation

Digital system is an interconnection of digital hardware modules that accomplish a specific information processing task

Digital system vary in size and complexity. Use modular design approach invariably

Modules contain registers, decoders, arithmetic elements and control logic.

Module interconnection by common control and data path

The best definition of digital modules are given by the registers they contain and the operations done on the content of registers.

The operations executed on data stored in registers are called microoperations

Examples of microoperations are shift,count, clear,and load. Registers are capable of implementing microoperations

Ex. Counter with parallel load facility can do increment and load microoperations. A bidirectional shift register is capable of shift right and shift left microoperations

Internal hardware organaisation of digital computer

It is defined by the following specification

1. The set of registers it contain and their function

2. The sequence of microoperations performed on the binary information stored in the registers

3. The control that initiates the sequence of microoperations

Specification of sequence of microoperations in words leads to lengthy descriptive explanation.

The symbolic notation used to describe the microoperation transfers among registers is called register transfer lanquage (RTL)

Register transfer Implies the availability of hardware logic circuits that can perform a stated microoperation and transfer the result to the same or another register.

RTL is a system for expressing in symbolic form the microoperation sequences among registers of a digital module. A convenient tool for describing the internal organisation of digital computers in concise and precise manner. It can also be used to facilitate the design process of digital system.

Symols are defined for various types of microoperations and hardware to implement the stated microoperations are described

Thus RTL will be used to specify register transfers, the microoperations and control functions that describe the internal hardware organisation of digital computers.

Representation of a Register

Register Transfer& Control function

Register transfer

REGISTERS:

Computer registers are designated by capital letters, followed by numerals sometimes.

Individual flip-flips in an n bit register are numbered in sequence from 0 through n-1, starting from 0 in the right most position and increasing the numbers toward the left.

Register is rep. as rectangular box, with name of the register inside. Bits are numbered from right to left. 16 bit registers consist of low order byte and high order byte

Information transfer is designated by replacement operator. R2 R1

The control condition for register transfer is terminated with a colon.

P: R2 R1

Every statement written in a register transfer notation implies a hardware construction for implementing the transfer.

Example control circuit and timing diagram

Clock is not included as a variable in register transfer in the register transfer statements. It is assumed that all transfers occurs during a clock edge transition

Basic symbols for register transfers

Letters(and numerals),parenthesis(),Arrow and comma.

Basic Symbols for register transfers

Bus and Memory Transfers

Bus system

The no; of wires will be excessive if separate lines are used between each register and all other registers in the system. Common bus system is a more efficient scheme. A bus structure consists of a set of common lines, one for each bit of a register,through which binary information is transferred one at a time. Control signals determine which register is selected by the bus during each particular register transfer.

Common bus system using multiplexers.

Bits in the same significant position in each register is are connected to the data inputs of one multiplexer to form one line of the bus.

Ex. MUX0 multiplexes the 4 ‘0’ bits of the registers.

Common bus system for four registers

Bus selection

N-line common bus

In general a bus system will multiplex k registers of n bits each to produce an line common bus.

The number of multiplexers required to construct the bus is equal to the number of bits (n) in each register.

The multiplexer size is given by k*1 where k specifies inputs to multiplexer. The k value is equal to the number of registers that use the common bus.

Example: a common bus for 8, 16 bit registers;

	Uses 16 multiplexers, 8 inputs for each multiplexers, 3 selection lines.

	BUS C R1 BUS

	R1 C

Transfer of information from bus to one of many destination registers:

Connect the bus lines to the input of all destination registers and activate the load control input of the particular destination register selected for transfer. When the bus is included in the register transfer statement, the register transfer is symbolized as above.

	

Three-state bus buffers

3-state gate

Buffer gate

Because of the high –impedance state of a three state gate, a large no: of 3-state gate outputs can be connected with wires to form a common bus lines without endangering loading effects. The connected buffers must be controlled so that only one three state buffer has access to the the bus line while all other buffers are maintained in a high impedance state.

Memory transfer

Read operation

Write operation

Bus system with 3-state buffers

Memory transfer

Arithmetic micro operations

4-categories of micro operation in digital computers

1. register transfer micro operations, transfer binary information from one register to another.

2. arithmetic micro operations, perform arithmetic operations on numeric data stored in registers

3. Logic micro operatios, perform bit manipulation operations on nonnumeric data stored in registers

4. Shift micro operations, perform shift operations on data stored in registers

Basic arithmetic micro operations are addition, subtraction, increment, decrement, and shift.

Subtraction is most often implemented by complementation and addition

In most computers, the multiplication operation is implemented with a sequence of add and shift micro operations. Division is implemented with a sequence of subtract and shift micro operations.

Table- Arithmetic Micro operations

Binary adder

Full adder---sums two bits and a previous carry

Binary adder constructed with full adder circuits in cascade.Augend & addend bits

Adder subtractor is made with full adder and xor gates

Binary incrementor can be made by binary counter or by using half adder circuits

Arithmetic circuit for basic arithmetic operations

4-bit Binary Adder

4-Bit adder-Subtractor

4-bit binary incrementer

4-bit arithmetic circuit

Arithmetic circuit function table

Logic microoperations

Logic microoperations are seldom used in scientific computations, but they are very useful for bit manipulation of binary data and for making logical decisions

Special symbols

When the symbol + occurs in a microoperation,it will denote an arithmetic plus. When it occurs in a control function(or boolean function), it will denote an OR operation.

The symbol ˅ will be used to denote OR microoperation and the symbol ˄ will be used to denote AND microoperation.

Ex. P+Q: R1←R2 + R3, R4←R5VR6

List of Logic microoperations

16 logic microoperations with 2 binary variables

Most computers use only four gates for AND< OR< XOR and Complement and derive the rest of the 16 logic operations from these 4 gates only.

For logic circuits with n-bits, there will be n stages of logic circuit with each stage capable of generating the four basic logic microoperations with selection inputs

16 functions of two variables

List of logic micro operations

Hardware implementation

Applications of logic Microoperations

Logic microoperationss can be used to manipulate individual bits or a portion of a word stored in a register.

They can be used to change bit values, delete a group of bits, or inserts new bit values into a register

A register is manipulated by operand register B by logic microoperations.

The OR microoperation is used to selectively set bits.The operand register must have 1’s in places where we want to set to 1 in register A

The XOR microoperation complements bits in A register,where there are corresponding 1’s in B register

The selective Clear operation clear to 0’s the bits in A only where there are corresponding 1’s in B. The logic microoperation is A˄B’

In mask operation ,AND microoperation is used to selectively clear bits of A registerwhere there are corresponding 0’s in. B register.

To insert a group of bits, the bits are first masked and then Ore by using ND microoperation for masking and OR microoperation for insert operation.

XOR micro operation is used to test whether two register values are equal or not

Shift Microoperation

Used for serial transfer of data. Also used in arithmetic, logic and other data processing operations.

During a shift- left operation , the serial input transfers the bit into the rightmost position. During shift - right operation, the serial input transfers a bit into the left-most position

A logical shift is one that transfers 0 through the serial input.

The circular shift circulates the bits of the register around the two ends without loss of information.Here serial output of shift register is connected to the shift input of the register

An Arithmetic shift is a microoperation, that shifts a signed binary number to the left or right. An arithmetic shft-left multiplies a signed binary number by two. An arithmetic shift – right divides the number by two. Arithmetic shift must leave the sign bit unchanged because the sign of the number remains the same when it is multiplied or divided by 2. The arithmetic shift right leaves the sign bit unchanged and shift the number including the sign bit to the right.Arithmetic shift-left is similar to logical shift left

Table -Shift Micro operations

4-bit combinational circuit shifter

Arithmetic logic shift unit

Function table – Arithmetic logic shift unit

Organization of a basic computer

The organization of a basic computer is defined by its internal registers, the timing and control structure and the set of instructions used.

The internal organization of a digital system is defined by the sequence of micro operations it performs on data stored on its registers.

A general purpose digital computer is capable of executing various micro operations and also can be instructed about the specific sequence of operations it must perform, by means of a program written by the user.

A program is a set of instructions that specify the operations, operands and the sequence by which processing has to occur.

A computer instruction is a binary code that specifies a sequence of micro operations for the computer. Instructions and data are stored in memory.

Computer reads instructions from memory and place it in a control register. The control interprets the binary code of the instruction and proceeds to execute by issuing a sequence of micro operations.

Every computer has its own unique instruction set. The ability to store and execute instructions is known as stored program concept.

Instruction codes

Instruction code is a group of bits.It is divided into operation part and operand part.

The group of bits in the operation part defines operations such as add,subtract, multiply, shift and complement.

The total number of operations available in the computer determine the no of bits in the operation part of instruction code.

What is the relationship between computer operation and microoperation?

The control unit receives the instruction from memory and interprets the operation code bits. It then issues a sequence of control signals to initiate microoperations in internal computer registers. For every operation code, the controlissues a sequence of microoperations needed for the hardware implementation of the specified operation. Thus an operation code is considered as macrooperation because it specifies a set of microoperations.

Operands are stored in processor registers or in memory words. Memory words are specified by their address and register by a group of bits (k bits) assigned to the instruction to specify one of 2’k registers.

The binary code of instruction can be arranged in many ways and each computer has its own particular instruction code format.Instruction code format are conceived by computer designers who specify the architecture of the computer.

Stored program organization

One processsor register

An instruction code format with two parts; operation code part and operand address part.

Control obtains the memory operand address from operand address part of instruction code and read the operand from memory which is operated with the data stored in processor register

Computers that have single processor register usually assign the name accumulator to it and lable it AC.

Operations such as clear AC, complement AC and increment AC operate on data soted in AC register and they do not need operand address. In such case, the operand address part of instruction code can be used to specify other operations for the computer.

Immediate operand

Direct address

Indirect address; one bit of the instruction code can be specified to distinguish between direct and indirect address.

Indirect address instruction needs two references to memory to fetch an operand

Effective address is defined as the address of the operand in the computation type instruction or the target address in the branch type instruction

Pointer

Fig-stored program organization

Demonstration of direct and indirect address

Computer registers & Common Bus System

Instruction sequencing in stored program computer needs a counter to calculate the address of the next instruction after execution of the current instruction is completed Program counter (PC) is provided for this in the processor.

A register is needed in the control unit of the processor for storing the instruction code after it is read from memory. The register provided for this purpose is called instruction register(IR).

The computer needs processor registers for manipulating data and a register for holding memory address.temporary register (TR) ,data register (DR) and memory address register (AR) are provided for this purpose.

INPR input registeris used to receive an 8-bit character from input device. OUTR , the output register is used to hold an 8-bit character for an output device.

Common Bus System: The no. of wires will be excessive if connections are made between the outputs of each register and the inputs of other registers.

A more efficient scheme for transfering information in a system with many registers is to use a comon Bus.

16-bit ommon bus syste m

List of registers for the basic computer

Basic computer register connected to common bus

Computer instructions

The basic computer has 3 instruction code formats of 16 bits each.

1. Memory- reference instruction format

2. Register-reference instruction format

3. Input-output Instruction Format

Operation code part contain 3 bits and the meaning of the remaining 13 bits depends on the operation code encountered

Memory ref. instn. Uses 12 bits to specify an address and one bit (leftmost bit) to specify addressing mode I.I is 0 for direct address and 1 for indirect address

Register reference instn. Are recognized by the opcode 111 with a 0 in the leftmost bit of the instruction.this instruction specifies an operation on the AC register or a test of the AC register. As memory operand address is not needed, the other 12 bits are used to specify the operation or test to be performed

Similarly Input-Output instn. does not need a ref. to memory and is recognized by the operation code 111 with a 1bit in the leftmost bit of the instruction.the remaining 12 bits are used to specify the type of input-output operation or test performed.

The basic computer is capable performing 25 instructions, eventhough the opcode is 3 bits wide.

This is because, the register reference and input-Output instruction uses 12 bits as part of the operation code

INSTRUCTION SET COMPLETENESS: The set of instruction are said to be complete if the computer includes a sufficient number of instructions in each of the following categories.

1. Arithmetic , logical and shift instructions. They provide computational capabilities to process the data used.

2. Instructions for moving information to/from memory and processor registers . They are required because all computations are done in processor registers and bulk of the binary information is stored in memory.

3. Program control instructions together with instructions that check status conditions. These instructions provide decision making capabilities to the digital computer.

4. Input-output Instructions. Used to provide communication between the computer and the user. Programs and data needs to be transferred to the memory and results must be sent to the user.

Basic Computer instruction format

Minimum Set of instructions of a basic computer

Basic computer instructions

ADD, CMA and INC can be used to add and subtract binary numbers when negative numbers are represented in signed 2’s complement form.

CIR and CIL can be used for arithmetic shift and any other types of shift desired.

Multiplication and division can be done using addition, subtraction and shifting

AND, CMA and CLA are logic operation instructions. The AND and CMA provide NAND operation. With NAND operation all other logic operations can be performed with two variables.

LDA and STA are used to move data to/from memeory

BUN, BSA<and ISZ, together with 4 skip instructions, provide capabilities for program controland checking of status conditions

INP and OUT instructions cause information to be transferred between the computer and external devices

The basic set of instructions are not efficient, because frequently used instructions are not performed rapidly. An efficient set of instructions will include instructions such as subtract, multiply, OR and XOR. These operations must be programmed in the basic computer.

Timing and control

A master clock generator controls the timing of all registers in the basic computer. The clock pulses are applied to all registers and flip-flops in the system, including the flip-flops and registers in the control unit.

The clock pulses do not change the state of a register unless the register is enabled by a control signal.

The control unit generates the control signals and provide them to the control input of multiplexers in the common bus, processor registers and for microoperations for the accumulator.

In the hardwired control organization, the control logic is implemented with gates, lip-flops, decoders and other digital circuits.These circuits can be optimized for fast mode of operation.

In the microprogrammed control organization, the control information is stored in a control memory. The control memory is programmed to initiate the required sequence of microoperations

A hardwired control requires changes in the wiring among the various components if the design has to be changed or modified.

In the microprogrammed control, any required changes or modifications can be done by updating the microprogram in the control memory

Hardwired Control Unit for basic computer

Control Unit

The control unit of basic computer consists of two decoders, a sequence counter and a no. of control logic gates. Instruction is read from memory and placed in inst. register(IR). The instruction code is divided into 3 parts: I bit, the operation code and bits 0 through 11.

The operation code in bits 12 to 14 are decoded with a 3x8 decoder. The 8 outputs of the decoder are labelled as D0 to D7. Bit 15 is transferred to a flip-flop designated by the symbol I.

Bits 0 through 11 are applied to the control logic gates.

The 4 bit sequence counter can count in binary from 0 through 15. The outputs of the counter are decoded into 16 timing signals T0 through T15.

D3T4: SC 0

The sequence conter Sc responds to the + ve transition of the clock.

The positive clock transition labelled T0 will trigger only those registers whose control inputs are connected to timing signal T0.

D3T4 control condition is generated by an AND gate and it becomes active when both D3 & T4 are active.This active signal generates clear SC signal.

A memory read or write signal will be initiated with the rising edge of a timing signal. Memory cycle time is assumed to be less than the clock cycle time . This causes the memory cycle to be completed before the next clock goes through its positve transition. Then the clock transition can be used to load memory word into the register

Example of Control Timing Signals

T0: AR PC ; T0 is active during an entire clock cycle interval . During TO PC is placed on the bus and Ld input of AR is enabled. The actual transfer does not occur until the end of the clock cycle, when the clock goes through + ve clock transition

Micro-operations in the fetch and decode phase of instruction

Assumptions: PC is loaded with memory address where the first instruction of the program is stored.Sequence counter SC is cleared to zero, to provide a decoded timing signal T0. After every clockpulse Sc is incremented by 1 and timing signals go through a sequence T0,T1,T2,T3 and so on

The micro operation for the fetch and decode phases by RTL statements:

T0: AR PC

T1: IR M[AR]

 PC PC+1

T2: D0, D1, ,,,D7 Decode

 IR(12-14)

 AR IR(0-11), I IR(15)

Implementing RTL statements in T0 &T1 in a bus system

Providing data path for achieving the fetch phase of instruction

The first clock generates T0. T0 makes selection inputs 010 and causes PC to place it’s contents on to the bus. T0 also is load signal for AR register. But any transfer will be initiated by rising edge of clock pulse. Hence next clock pulse complete the transfer from PCTAR.

The next clock clears T0 and generates T1.

T1 state is to be used to move the content of memory addressed by AR into IR.Then PC is to be inremented by 1. To do this, (a).Read signal is to be applied to memory. (b).selection inputs is to be generated as 111, to select memory (c). Load signal to be applied to IR (d). PC is to be incremented by 1.

Within T1, memory data will be outputed to bus. The rising edge of T2 transfer memory data on the bus into IR and also increment PC.

During T2, The instruction is interpreted (decoded) by the decoder unit and the decoded signals are applied to control unit.

During T3 the control unit determine the type of instruction and determine the type of instruction after testing the appropriate instn. Bits.

1. Memory reference instructions either with direct or indirect address.

2. Register or I/O reference instructions. These instns. Are executed with clock associated with T3. The next clock clears SC to zero.

For memory ref. instn with indirect address, the rising edge of T4 will cause effective address from memory to be loaded into address register and the indicated operation is carried out

Flow chart for instruction cycle

Control functions and micro-operations for the register- reference Instn

Reg. ref. Instructions are executed with the clock transitions associated with T3. These instn. Use bits 0 through 11 of instn. Code to specify one of 12 instructions. They are also transferred to AR during T2.The control function is distinguished by one of the bits in IR (0-11)

Flow chart for Memory reference instruction

Nanoinstructions and nanomemory

Instead of encoding individual microoperations, it is possible to encode all microoperations in a single field. This can be done when the same microooperations occur together repeatedly in the microcode. This microcode memory outputs a value that points to a location in nanomemory, as shown in fig. The nanomemory act as a look-up table and output nanoinstructions which is the microoperation for that micro instruction. The bits used for sequencing is not changed.

Microcode Memory

Nanomemory

Microoperations

SEL

ADD

Generating microoperations using nanomemory

Nanoinstructions cont.

Using nanomemory can reduce the overall size of memory in a microsequencer.If 10 different microinstructions assert exactly the same microoperations, all of these microinstructions can point to a single memory in nanomemory. Consider a microsequencer with 128 microinstructions and 32 different microoperations. A horizontally microcoded microsequencer would require 128x32= 4096 bits of storage for it’s microoperations. Now assume that only 16 unique combinations of microoperations occur in these 128 microinstructions.

We could store these 16 patterns in a 16x32 nanomemory.

Each of the 128 microinstructions would require a 4 bit field to point to the correct pattern in nanomemory. This would require a 16x32=512 bits for nanoemory and an additional 124x4=512 bits for pointers in microcode memory.The total of 1024 bits is one fourth the number of bits used by horizontal microcode to generate the same microoperations.

image1.png

Figure 4-1 Block diagram of register.

L_ RI1 _] ‘76543210_]

(a) Register R (b) Showing individual bits

15 0 15 8 7 0
= R2 | [re@ | rew

(c) Numbering of bits (d) Divided into two parts

image2.png

Figure 4-2 Transfer from R1 to R2 when P = 1.

Load
R2 < Clock

(a) Block diagram

t t+1

SVl B e W I o OO O

PR S5 S SREE T
Transfer occurs here

(b) Timing diagram

image3.png

TABLE 4-1 Basic Symbols for Register Transfers

Symbol Description Examples
Letters Denotes a register MAR, R2
(and numerals)
Parentheses () Denotes a part of a register R2(0-7), R2(L)
Arrow « Denotes transfer of information R2 « R1

Comma , Separates two microoperations R2 « R1, R1 « R2

image4.png

Figure 4-3 Bus system for four registers.

4- line
common
S bus
So
4x1 4><1 4x1 4x1
MUX 3 MUX 1 MUX 0
312 =10 Sty 0] a2 e 0
D, C; B, A; D, C B, A Do Cy By Ag
Dy Dy Dy G C G B, Bi By Ay Ar Ay

3 S 2 10 BpasD sl () 3= 2 %m0 Be 25 140

Register D Register C Register B Register A

image5.png

TABLE 4-2 Function Table for Bus of Fig. 4-3

51 So Register selected

A

- o
=

B
(¢
D

image6.png

Bus line for bit 0

St

2x4 L
decoder 2

Select {

Enable E

3

Figure 4-5 Bus line with three state-buffers.

image7.png

Read: DR < MI[AR]

image8.png

R3 « R1+RZ+1

image9.png

memory read

image10.png

memory write

image11.png

TABLE 4-3 Arithmetic Microoperations

Symbolic

designation Description
R3 « R1+ R2 Contents of R1 plus R2 transferred to R3
R3 < R1-R2 Contents of R1 minus R2 transferred to R3
R2 « R2 Complement the contents of R2 (1’s complement)
R2 <« R2Z +1 2's complement the contents of R2 (negate)
R3 « R1+R2Z+1 RI1 plus the 2's complement of R2 (subtraction)
R1'«< R1+1 Increment the contents of R1 by one

RIFeRT=1 Decrement the contents of R1 by one

image12.png

Cy

S3

S Sy

Figure 4-6 4-bit binary adder.

So

image13.png

Cs

S3

Sz

Figure 4-7

Sy

4-bit adder-subtractor.

So

image14.png

Figure 4-8 4-bit binary incrementer.

image15.png

Figure 4-9 4-bit arithmetic circuit.

image16.png

TABLE 4-4 Arithmetic Circuit Function Table

Select
Input Output

S1 So Cin Y D=A+Y + Cy Microoperation
0 0 0 B D=A+B Add
0 0 1 B D=A+B+1 Add with carry
0 1 0 B D=A+B Subtract with borrow
0 1 1 B D=A+B +1 Subtract
1 0 0 0 D=A Transfer A
1 0 il 0 D=A+1 Increment A
ik 1 0 1 D=A-1 Decrement A
1 1l 1 1 D=A Transfer A

image17.png

F, F; F, Fs Fs F;, Fs Fs Fo Fu Fp, Fs Fu Fis

B

x y|F

image18.png

TABLE 4-6 Sixteen Logic Microoperations

Boolean function Microoperation Name
F,=0 F<0 Clear
F, =xy F<ANB AND
E, = xy’ F<ANB
F=x F<A Transfer A
F.=x'y F<A N\B
Fs=y F<B Transfer B

s =x®Dy F<A®B Exclusive-OR

F=x+y F<A\/B OR
Fs=(x +y) F<AVB NOR
F, = (x®y)’ F<A®B Exclusive-NOR
Fo=y' F<B Complement B
Fy=x+y' F<AVE
Fuo=x' F<4 Complement A
Fs=x"+y F<A\/B
Fi = (xy) F<ANB NAND
Fs=1 F<all I’s Set to all 1’s

image19.png

Figure 4-10 One stage of logic circuit.

3

— E;

D e —

(a) Logic diaoram

Operation

AND

0 | OR
il 0 XOR
Complement

(b) Function table

image20.png

TABLE 4-7 Shift Microoperations

Symbolic designation

Description

R<shlR
R<shrR
R<dlR
R«cirR
R<ashlR
R <ashr R

Shift-left register R
Shift-right register R
Circular shift-left register R
Circular shift-right register R
Arithmetic shift-left R
Arithmetic shift-right R

image21.png

Select
0 for shift right (down)

pen 1 for shift left (up)

input (Ig)

Function table

Select

Output

Hy Hi Hy H;

Serial
input (I7)

Figure 4-12 4-bit combinational circuit shifter.

Ik A A A

A A AL

— e

image22.png

Figure 4-13 One stage of arithmetic logic shift unit.

S3
Sz
S

So

Ci+1

Aiy

Aivy

E,

shr

shl

image23.png

TABLE 4-8 Function Table for Arithmetic Logic Shift Unit

Operation select

S Sz S; So Cin Operation Function

0 0 0 0 0 F=A Transfer A

0 0 0 0 1 F=A+1 Increment A

0 0 0 1 0 F=A+B Addition

0 0 0 1 il F=A+B+1 Add with carry

0 0 1 0 0 F=A+B Subtract with borrow
0 0 1 0 i F=A+B +1 Subtraction

0 0 1 it 0 E=A-1 Decrement A

0 0 1 il 1 F=A Transfer A

0 i 0 0 X F=ANB AND

0 1 0 4 X F=A\B OR

0 ik 1 0 X F=A®B XOR

0 1 i it XA e A Complement A

1 0 X X X F=shrA Shift right A into F
11 LB R o P o] A Shift left A into F

image24.png

Figure 5-1 Stored program organization.

15 12 /11 0
Opcode Address
Instruction format

15 0

Binary operand

Memory
4096 x 16

i S

Instructions
(program)

—

Operands
(data)

Processor register
(accumulator or AC)

image25.png

15 14 12,11 0
I Opcode Address l

(a) Instruction format

Memory

22(0 457

457 Operand

AC

(b) Direct address (c) Indirect address

Figure 5-2 Demonstration of direct and indirect address.

image26.png

TABLE 5-1 List of Registers for the Basic Computer

Register Number

symbol of bits Register name Function

DR 16 Data register Holds memory operand
AR 12 Address register Holds address for memory
AC 16 Accumulator Processor register

IR 16 Instruction register ~ Holds instruction code

PG 12 Program counter Holds address of instruction
TR 16 Temporary register Holds temporary data
INPR 8 Input register Holds input character

OUTR 8 Output register Holds output character

image27.png

Figure 5-4 Basic computer registers connected to a common bus.

image28.png

Figure 5-5 Basic computer instruction formats.

15 14 12) 11 0

(a) Memory — reference instruction

15 12 11 0

ety a Register operation (Opcode = 111, I=0)

(b) Register — reference instruction
15 12 11 0

(c) Input — output instruction

image29.png

TABLE 5-2 Basic Computer Instructions

Hexadecimal code

Symbol I=0 I=1 Description

AND Oxxx 8xxx AND memory word to AC
ADD 1xxx 9xxX Add memory word to AC
LDA 2xxx Axxx Load memory word to AC

STA 3xxx Bxxx Store content of AC in memory
BUN 4xxx Cxxx Branch unconditionally

BSA Sxxx Dxxx Branch and save return address
1Sz 6xxx Exxx Increment and skip if zero
CLA 7800 Clear AC

CLE % 7400 Clear E

CMA 7200 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC and E

CIL 7040 Circulate left AC and E

INC 7020 Increment AC

SPA 7010 Skip next instruction if AC positive
SNA 7008 Skip next instruction if AC negative
SZA 7004 Skip next instruction if AC zero
SZE 7002 Skip next instruction if E is 0
HLT 7001 Halt computer

INP F800 Input character to AC

ouT F400 Output character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION F080 Interrupt on

IOF F040 Interrupt off

image30.png

Instruction register (/R)

Other inputs

Do

Da Control

outputs

Ty

Increment (INR)
Clear (CLR)
Clock

- Figure 5-6 Control unit of basic computer.

image31.png

image32.png

image33.png

T
r IR < MI[AR], PC<PC+1 ‘

1 >

Decode operation code in /R (12— 14)

AR IR (0—11), I < IR (15)

(Registeror I/0) =1

=0 (register)

T3 T3

Execute Execute
input-output register-reference
instruction instruction

SC«0 SC«0

Execute
memory-reference
instruction

SC«0

Figure 5-9 Flowchart for instruction cycle (initial configuration).

image34.png

TABLE 5-3 Execution of Register-Reference Instructions

D,I'T; = r (common to all register-reference instructions)

IR(i) = B; [bit in IR(0-11) that specifies the operation]

CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT

r:

rBy:
rBg:
rB;:
rBg:
rBs:
rBy:
rBs:
rB;:
rBi:
rBo:

rBu:
rByg:

SC <0

AC <0

B0

AC<AC

E<E

AC «shr AC, AC(15)«<E, E < AC(0)
AC «<shl AC, AC(0) < E, E < AC(15)
AC<AC+1

If (AC(15) = 0) then (PC < PC + 1)
If (AC(15) = 1) then (PC < PC + 1)
If (AC = 0) then PC < PC + 1)

If (E = 0) then (PC<PC + 1)

S <0 (S is a start—stop flip-flop)

Clear SC

Clear AC

Clear E
Complement AC
Complement E
Circulate right
Circulate left
Increment AC
Skip if positive
Skip if negative
Skip if AC zero
Skip if E zero
Halt computer

image35.png

Memory — reference instruction

AND ADD LDA STA
DoTy DTy Y DyTy DsTy
DR < M[AR] I DR < M [MAR] DR < M [AR] M [AR] < AC
SC«0
l DoTs l D\Ts Y D,Ts
AC <« ACNADR AC « AC +DR AC « DR
E-<Coun

SC«0 SC «0 SC«0

BUN BSA 182

PC < AR

SC <0

M [AR] « PC

AR—AR +1

DeTs

DR < M [AR]

M [AR] < DR
¥ (DR = 0)

then (PC <~ PC +1)
SC <0

Figure 5-11 Flowchart for memory-reference instructions.

Register transfer lanquage

image51.emf
4.2.5.b.docx

image3.emf
lecture-3'.pptx

4.2.5.b.docx
UNIT-II

1. In Reverse Polish notation, expression A*B+C*D is written as

(A) AB*CD*+ (B) A*BCD*+ (C) AB*CD+* (D) A*B*CD+

Ans: A

2. The addressing mode used in an instruction of the form ADD X Y, is

(A) Absolute (B) indirect (C) index (D) none of these

Ans: C

3. The BSA instruction is

(A) Branch and store accumulator (B) Branch and save return address

(C) Branch and shift address (D) Branch and show accumulator

Ans: B

4. In a program using subroutine call instruction, it is necessary

(A) initialise program counter (B) Clear the accumulator

(C) Reset the microprocessor (D) Clear the instruction register

Ans: D

5. A Stack-organised Computer uses instruction of

 (A) Indirect addressing (B) Two-addressing (C) Zero addressing (D) Index addressing

Ans: C

6. Logic X-OR operation of (4ACO) H & (B53F) H results

(A) AACB (B) 0000 (C) FFFF (D) ABCD

Ans: C

7. When CPU is executing a Program that is part of the Operating System, it is said to be in (A) Interrupt mode (B) System mode (C) Half mode (D) Simplex mode

Ans: B

8. A three input NOR gate gives logic high output only when

(A) one input is high (B) one input is low

(C) two input are low (D) all input are high

Ans: D

9. n bits in operation code imply that there are ___________ possible distinct operators (A) 2n (B) 2n (C) n/2 (D) n2

Ans: B

10. The instruction ‘ORG O’ is a

(A) Machine Instruction. (B) Pseudo instruction.

(C) High level instruction. (D) Memory instruction.

Ans: B

image52.emf
4.2.5.c.docx

Microsoft_Office_Word_Document32.docx
Fill in the blanks with true or false statement.

1. An instruction code is a group of bytes that instruct the computer to perform a specific operation. .

2. The number of bits required for the operation code of an instruction depends on the total number of operations available in the computer. .

3. When the second part of an instruction code specifies an operand, the instruction is said to have direct address .

4. If the memory address register has 12 bits, then the program counter register will have 16 bits. .

5. If the load input of a register is enabled, then it will receive data from the bus during the next clock pulse transition.

6. The timing signals to the control logic can be derived by decoding the output of a sequence counter.

7. The operation of deletion in a stack is called push or push down operation.

8. Arithmetic, logical and shift instructions come under data manipulation instructions.

9. The instruction that transfers program control to a subroutine is known as branch and save address.

10. Interrupts are classified as traps and faults.

Answer: (1) false (2) True (3) false (4) false (5)true (6) true (7) false (8) true

 (9) true (10) false

image53.emf
4.2.6.c.docx

4.2.6.c.docx
Essay Type Questions:

UNIT-II

1. What is the need of addressing modes? Explain different types of addressing modes

2. List out the instruction formats used in the processor and discuss with example

3. Explain about machine instruction characteristics

4. What are the differences between direct and indirect addressing instructions? How

many references to memory are needed for each type of instruction to bring an operand in to a process register?

5. Discuss about the register organization in computer

6. Explain about registers for floating point arithmetic operation

7. Discuss about one stage of a decimal arithmetic unit.

8. Discuss about adding of decimal numbers methods.

9. Discuss about the design of the control unit

10. Explain Booth’s algorithm. Apply Booth’s algorithm to multiply the two decimal numbers 14 and 12. Assume the multiplier and multiplicand to be of 5 bits each

image54.emf
4.2.6.a.docx

4.2.6.a.docx
1. What do you mean by RTL?.

2. What do you mean by common bus system?

3. What is the use of 3 state buffers?

4. List out different arithmetic operations.

5. What do you mean by stored program organization.

6. List out registers for a basic computer.

7. What is meant by hardwired control unit?

8. What is meant by micro programmed control?

9. What do you mean by interrupt based data transfer?

10. What is reverse polish notation?

image55.emf
4.2.6.b.docx

4.2.6.b.docx

[image:]

1. Referring to the bus system shown above, explain why each of the following micro operations cannot be executed during a single clock pulse. Specify a sequence of micro operations that will perform the operation.

A. IR M[PC] B. AC AC +TR

 C. DR DR + AC (AC does not change).

2. Referring to the above bus system, the following control inputs are active. For each case , specify the register transfer that will be executed during the next clock transition.

		

		S2

		S1

		S0

		LD of register

		Memory

		Adder

		a.

		1

		1

		1

		IR

		Read

		

		b.

		1

		1

		0

		PC

		

		

		c.

		1

		0

		0

		DR

		Write

		

		d.

		0

		0

		0

		AC

		

		 Add

3. The following register transfers are to be executed in the above system. For each transfer specify: (1) The binary value that must be applied to bus select inputs S2, S1, S0; (2)the register whose load control input must be active(if any); (3) A memory read or write operation (if needed); and (4) the operation in the adder and logic circuit (if any).

[image:]

4.

[image:]

[image:]

5.

[image:]

[image:]

8. [image:]

	

9. [image:]

10. [image:]

image4.emf

image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image1.emf

image2.emf

image3.emf

image56.emf

